Energy fuels retrieved from biomass utilization are considered to be an economically and environmentally friendly source. In this day and age, bioenergy provides an alternative option to replace traditional fossil-based energy to accomplish energy demand with fewer greenhouse gas emissions into the environment. A huge amount of food waste is produced every year due to mass ethnographic activities. Their potential has been underused and this has led to waste ending up in the garbage. Bioenergy production by anaerobic digestion of cheap substrate provides an effectual approach to cope with this issue. The hydrolysis stage during anaerobic digestion is enhanced by various pretreatment methods, where the disintegration of the waste substrate leads to the enhancement of soluble organics and eases the production of bioenergy. The present review focuses on state-of-the-art knowledge about food waste, its utilization, and its valorization by the action of pretreatment, thereby enhancing anaerobic digestion. Additionally, this review further focuses on the major challenges during the pretreatment method and future recommendations.
A 14-year-old girl presented with gradually progressive breathlessness for 3 weeks. On evaluation, it was found that she had left ventricular hypertrophy and nonprogressive R wave in ECG. An echocardiogram revealed aortic stenosis and severe left ventricular dysfunction.Computed Tomography (CT) imaging showed aortic annulus calcifications causing aortic stenosis. Over three years she had gradually developed asymptomatic cutaneous swellings over the small and large joints of the extremities suggestive of tuberous xanthomas. Skin biopsy revealed scattered foamy macrophages in the upper dermis and cholesterol clefts. Her lipid profile showed raised total cholesterol and low-density lipoprotein levels. With the above clinical, histological, and laboratory findings she was diagnosed as a case of familial homozygous hypercholesterolemia with tuberous xanthomas and cardiac failure. She was started on statins, ezetimibe, and other anti-failure measures. We present this case for its rarity. Early diagnosis of this condition based on skin findings, could have prevented cardiac failure by initiating early appropriate treatment.
The current study intended to improve the disintegration potential of paper mill sludge through alkyl polyglycoside-coupled disperser disintegration. The sludge biomass was fed to the disperser disintegration and a maximum solubilization of 6% was attained at the specific energy input of 4729.24 kJ/kg TS. Solubilization was further enhanced by coupling the optimum disperser condition with varying dosage of alkyl polyglycoside. The maximum solubilization of 11% and suspended solid (SS) reduction of 8.42% were achieved at the disperser rpm, time, and surfactant dosage of 12,000, 30 min, and 12 μL. The alkyl polyglycoside-coupled disperser disintegration showed a higher biogas production of 125.1 mL/gCOD, compared to the disperser-alone disintegration (70.1 mL/gCOD) and control (36.1 mL/gCOD).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.