The purpose of this research was to mask the intensely bitter taste of ondansetron HCl and to formulate a rapiddisintegrating tablet (RDT) of the taste-masked drug. Taste masking was done by complexing ondansetron HCl with aminoalkyl methacrylate copolymer (Eudragit EPO) in different ratios by the precipitation method. Drug-polymer complexes (DPCs) were tested for drug content, in vitro taste in simulated salivary fluid (SSF) of pH 6.2, and molecular property. Complex that did not release drug in SSF was considered taste-masked and selected for formulation RDTs. The complex with drug-polymer ratio of 8:2 did not show drug release in SSF; therefore, it was selected. The properties of tablets such as tensile strength, wetting time, water absorption ratio, in vitro disintegration time, and disintegration in the oral cavity were investigated to elucidate the wetting and disintegration characteristics of tablets. Polyplasdone XL-10 7% wt/wt gave the minimum disintegration time. Tablets of batch F4 containing spray-dried mannitol and microcrystalline cellulose in the ratio 1:1 and 7% wt/wt Polyplasdone XL-10 showed faster disintegration, within 12.5 seconds, than the marketed tablet (112 seconds). Good correlation between in vitro disintegration behavior and in the oral cavity was recognized. Taste evaluation of RDT in human volunteers revealed considerable taste masking with the degree of bitterness below threshold value (0.5) ultimately reaching to 0 within 15 minutes, whereas ondansetron HCl was rated intensely bitter with a score of 3 for 10 minutes. Tablets of batch F4 also revealed rapid drug release (t 90 , 60 seconds) in SGF compared with marketed formulation (t 90 , 240 seconds; P G .01). Thus, results conclusively demonstrated successful masking of taste and rapid disintegration of the formulated tablets in the oral cavity.
The purpose of the present study was to prepare inclusion complex of domperidone with hydroxylpropyl-β-cyclodextrin in order improved the solubility and hence to increase dissolution of domperidone. An effect of concentration of hydroxylpropyl-β-cyclodextrin on the aqueous solubility of domperidone was determined by phase-solubility method. The aqueous solubility of domperidone increased as a function of hydroxylpropyl-β-cyclodextrin concentration, showing AL type diagram. Solid domperidone/hydroxylpropyl-β-cyclodextrin complex was prepared in ratio 1:1 by ultrasonication and kneading method. Solid state inclusion complex was characterized by FTIR, powder X-ray diffraction and differential-scanning calorimetry techniques. FTIR studies showed intactness of drug in complex whereas powder diffraction studies showed that hydroxylpropyl-β-cyclodextrin complex was amorphous. Solubility studies showed that complexation increased domperidone solubility as compared to pure drug in 0.1M hydrochloric acid and distilled water. Drug content confirms that ultrasonication is one of the efficient methods to prepare inclusion complex. Dissolution data of inclusion complexes also indicated that there is 1.4 folds increase in dissolution as compared to pure drug and was observed in case of inclusion complexes prepared by ultrasonication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.