Many medications including antibiotics taste bitter. The potency of these antibiotics on the 25 bitter taste receptors (T2Rs) in humans remains poorly understood. Here we characterize by sensory and structure-function analyses how antibiotics frequently used to treat airway infections in cystic fibrosis activate multiple human T2Rs. The potency of the broad-spectrum antibiotics, tobramycin, levofloxacin, and azithromycin on the highly expressed T2Rs in airways, T2R4, T2R14, and T2R20 was pursued. The amino acids and structural features of T2R4, T2R14, and T2R20 important for antibiotic binding were characterized by mutational analysis in heterologous cell-based assays. Strikingly, extracellular loop 2 in T2Rs performs a key function in binding to antibiotics with contribution from residues in transmembrane helices. Our results suggest that different antibiotics activate multiple T2Rs with different potencies. An understanding of the nonantibiotic and physiologic effects mediated through T2Rs on the host cells is much needed.-Jaggupilli, A., Singh, N., De Jesus, V. C., Gounni, M. S., Dhanaraj, P., Chelikani, P. Chemosensory bitter taste receptors (T2Rs) are activated by multiple antibiotics.
Persistent pulmonary hypertension of the newborn (PPHN) features hypoxemia, pulmonary vasoconstriction, and impaired cardiac inotropy. We previously reported low basal and stimulated cAMP in hypoxic pulmonary artery smooth muscle cells (PASMCs). We now examine pulmonary arterial adenylyl cyclase (AC) activity and regulation in hypoxic PPHN. PPHN was induced in newborn swine by normobaric hypoxia (fraction of inspired oxygen 0.10) for 72 h and compared with age-matched normoxic controls. We studied relaxation of pulmonary arterial (PA) rings to AC activator forskolin and cGMP activator sodium nitroprusside (SNP) by isometric myography, ATP content, phosphodiesterase activity, AC content, isoform expression, and catalytic activity in presence or absence of Gαs-coupled receptor agonists, forskolin, or transnitrosylating agents in human and neonatal porcine PASMCs and HEK293T stably expressing AC isoform 6, after 72 h hypoxia (10% O2) or normoxia (21% O2). Relaxation to forskolin and SNP were equally impaired in PPHN PA. AC-specific activity decreased in hypoxia. PASMC from PPHN swine had reduced AC activity despite exposure to normoxia in culture; transient hypoxia in vitro further decreased AC activity. Prostacyclin receptor ligand affinity decreased, but its association with Gαs increased in hypoxia. Total AC content was unchanged by hypoxia, but AC6 increased in hypoxic cells and PPHN pulmonary arteries. Impairment of AC6 activity in hypoxia was associated with nitrosylation. PPHN PA relaxation is impaired because of loss of AC activity. Hypoxic AC is inhibited because of S-nitrosylation; inhibition persists after removal from hypoxia. Downregulation of AC-mediated relaxation in hypoxic PA has implications for utility of Gαs-coupled receptor agonists in PPHN treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.