An ideal surface of poly(dimethylsiloxane) (PDMS) medical devices requires sustained drug release to combat various tissue responses and infection. At present, a noncovalent surface coating with drug molecules using binders possesses a detachment problem, while covalently linking drug molecules to the surface provides no releasable drug. Here, a platform that allows the deposition of diverse drugs onto the PDMS surface in an adequate quantity with reliable attachment and a sustained-release character is demonstrated. First, a PDMS surface with carboxyl functionality (PDMS-COOH) is generated by subjecting a PDMS piece to an oxygen plasma treatment to obtain silanol moieties on its surface, then condensing the silanols with (3-aminopropyl)triethoxysilane molecules to generate amino groups, and finally reacting the amino groups with succinic anhydride. The drug-loaded carriers with hydroxyl groups on their surface can then be esterified to PDMS-COOH, resulting in a PDMS surface covalently grafted with drug-filled nanocarriers so that the drugs inside the securely grafted carriers can be released. Demonstrated here is the covalent linking of the surface of a PDMS endotracheal tube with budesonide-loaded ethylcellulose nanoparticles. A secure and high drug accumulation at the surface of the tubes (0.025 mg/cm2) can be achieved without changes in its bulk property such as hardness (Shore-A), and sustained release of budesonide with a high release flux during the first week followed by a reduced release flux over the subsequent 3 weeks can be obtained. In addition, the grafted tube possesses more hydrophilic surface and thus is more tissue-compatible. The grafted PDMS pieces show a reduced in vitro inflammation in cell culture and a lower level of in vivo tissue responses, including a reduced level of inflammation, compared to the unmodified PDMS pieces, when implanted in rats. Although demonstrated with budesonide and a PDMS endotracheal tube, this platform of grafting a PDMS surface with drug-loaded particles can be applied to other drugs and other devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.