Abstract-Border Gateway Protocol (BGP) is the core component of the Internet's routing infrastructure. Abnormal routing behavior impairs global Internet connectivity and stability. Hence, designing and implementing anomaly detection algorithms is important for improving performance of routing protocols. While various machine learning techniques may be employed to detect BGP anomalies, their performance strongly depends on the employed learning algorithms. These techniques have multiple variants that often work well for detecting a particular anomaly. In this paper, we use the decision tree and fuzzy rough set methods for feature selection. Decision tree and extreme learning machine classification techniques are then used to maximize the accuracy of detecting BGP anomalies. The proposed techniques are tested using Internet traffic traces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.