Both Ebolavirus and Marburgvirus were detected in several fruit bat species of the family Pteropodidae, suggesting that this taxon plays a key role in the life cycle of filoviruses. After four decades of Zaire Ebolavirus (ZEBOV) outbreaks in Central Africa, the virus was detected for the first time in West Africa in 2014. To better understand the role of fruit bats as potential reservoirs and circulating hosts between Central and West Africa, we examine here the phylogeny and comparative phylogeography of Pteropodidae. Our phylogenetic results confirm the existence of four independent lineages of African fruit bats: the genera Eidolon and Rousettus, and the tribes Epomophorini and Scotonycterini, and indicate that the three species suspected to represent ZEBOV reservoir hosts (Epomops franqueti, Hypsignathus monstrosus, and Myonycteris torquata) belong to an African clade that diversified rapidly around 8-7 Mya. To test for phylogeographic structure and for recent gene flow from Central to West Africa, we analysed the nucleotide variation of 675 cytochrome b gene (Cytb) sequences, representing eight fruit bat species collected in 48 geographic localities. Within Epomophorina, our mitochondrial data do not support the monophyly of two genera (Epomops and Epomophorus) and four species (Epomophorus gambianus, Epomops franqueti, Epomops buettikoferi, and Micropteropus pusillus). In Epomops, however, we found two geographic haplogroups corresponding to the Congo Basin and Upper Guinea forests, respectively. By contrast, we found no genetic differentiation between Central and West African populations for all species known to make seasonal movements, Eidolon helvum, E. gambianus, H. monstrosus, M. pusillus, Nanonycteris veldkampii, and Rousettus aegyptiacus. Our results suggest that only three fruit bat species were able to disperse directly ZEBOV from the Congo Basin to Upper Guinea: E. helvum, H. monstrosus, and R. aegyptiacus.
Abstract. In 1966, Robert William Hayman, Xavier Misonne and Walter Verheyen published their listing of the Congolese, Rwandan and Burundian bat specimens in the collections in the museums of Tervuren, Brussels, Geneva, London and New York. In the fifty years that have passed since, some major changes have been introduced in the taxonomy of the Chiroptera: new species have been discovered, species have been split off, species have been moved to other genera, and additional material has been collected. We re-evaluated the data presented by Hayman et al., and supplemented this with specimen records found in the literature and in online catalogs. This resulted in 136 species, represented by 20 231 specimens (compared to 113 species and 8567 specimens originally). When available, we also recorded additional information such as locality, sex and age, collector, collection date and preservation type of the voucher specimen. The distribution maps of the Congolese taxa are revised to represent the current taxonomy, and are presented in perspective against the taxon's Species Distribution Model to assess species distribution on the African continent. Additionally, an updated key to the various taxa is presented.
The genus Glauconycteris Dobson, 1875 currently contains 12 species of butterfly bats, all endemic to sub-Saharan Africa. Most species are rarely recorded, with half of the species known from less than six geographic localities. The taxonomic status of several species remains problematic. Here, we studied the systematics of butterfly bats using both morphological and molecular approaches. We examined 45 adult specimens for external anatomy and skull morphology, and investigated the phylogeny of Glauconycteris using DNA sequences from three mitochondrial genes and 116 individuals, which in addition to outgroup taxa, included nine of the twelve butterfly bat species currently recognized. Four additional nuclear genes were sequenced on a reduced sample of 69 individuals, covering the outgroup and Glauconycteris species. Our molecular results show that the genus Glauconycteris is monophyletic, and that it is the sister-group of the Asian genus Hesperoptenus.Molecular dating estimates based on either Cytb or RAG2 data sets suggest that the ancestor of Glauconycteris migrated into Africa from Asia during the Tortonian age of the Late Miocene (11.6-7.2 Mya), while the basal diversification of the crown group occurred in Africa at around 6 AE 2 Mya. The species G. superba is found to be the sister-group of G. variegata, questioning its placement in the recently
We report the rediscovery of the pied butterfly bat, Glauconycteris superba Hayman, 1939, 40 years after this species was last recorded. The new specimen from Mbiye Island, Democratic Republic of the Congo, is compared with the type specimens of G. s. superba and G. superba sheila Hayman, 1947 and a specimen from Matonguiné, Ivory Coast. The variation in the striking colouration of the pelage as well as in morphometric data is considered to be individual rather than geographic variation and we tentatively regard G. s. sheila as a synonym of the nominate form. Despite the wide distribution of this species in the tropical forest zone of West and Central Africa, only four specimens from four localities are known to date, which might indicate very specific habitat preferences. Contemporary land cover information around historic collection sites shows degraded landscapes. Given the highly uncertain area of occupancy of this species, we suggest changing the status of G. superba in the IUCN Red List of Threatened Species from "Least Concern" to "Data Deficient"
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.