Epstein-Barr virus (EBV) is an oncogenic herpesvirus associated with a number of human malignancies of epithelial and lymphoid origin. However, the mechanism of oncogenesis is unclear. A number of viral products, including EBV latent proteins and non-protein coding RNAs have been implicated. Recently it was reported that EBV-encoded small RNAs (EBERs) are released from EBV infected cells and they can induce biological changes in cells via signaling from toll-like receptor 3. Here, we investigated if these abundantly expressed non-protein coding EBV RNAs (EBER-1 and EBER-2) are excreted from infected cells in exosomal fractions. Using differential ultracentrifugation we isolated exosomes from three EBV positive cell lines (B95-8, EBV-LCL, BL30-B95-8), one EBER-1 transfected cell line (293T-pHEBo-E1) and two EBV-negative cell lines (BL30, 293T-pHEBo). The identity of purified exosomes was determined by electron microscopy and western blotting for CD63. The presence of EBERs in cells, culture supernatants and purified exosomal fractions was determined using RT-PCR and confirmed by sequencing. Purified exosomal fractions were also tested for the presence of the EBER-1-binding protein La, using western blotting. Both EBER-1 and EBER-2 were found to be present not only in the culture supernatants, but also in the purified exosome fractions of all EBV-infected cell lines. EBER-1 could also be detected in exosomal fractions from EBER-1 transfected 293T cells whilst the fractions from vector only transfectants were clearly negative. Furthermore, purified exosomal fractions also contained the EBER-binding protein (La), supporting the notion that EBERs are most probably released from EBV infected cells in the form of EBER-La complex in exosomes.
BackgroundEpstein-Barr virus (EBV) is an oncogenic virus implicated in the pathogenesis of several human malignancies. However, due to the lack of a suitable animal model, a number of fundamental questions pertaining to the biology of EBV remain poorly understood. Here, we explore the potential of rabbits as a model for EBV infection and investigate the impact of immunosuppression on viral proliferation and gene expression.MethodsSix healthy New Zealand white rabbits were inoculated intravenously with EBV and blood samples collected prior to infection and for 7 weeks post-infection. Three weeks after the last blood collection, animals were immunosuppressed with daily intramuscular injections of cyclosporin A at doses of 20 mg/kg for 15 days and blood collected twice a week from each rabbit. The animals were subsequently sacrificed and tissues from all major organs were collected for subsequent analysis.ResultsFollowing intravenous inoculation, all 6 rabbits seroconverted with raised IgG and IgM titres to EBV, but viral DNA in peripheral blood mononuclear cells (PBMCs) could only be detected intermittently. Following immunosuppression however, EBV DNA could be readily detected in PBMCs from all 4 rabbits that survived the treatment. Quantitative PCR indicated an increase in EBV viral load in PBMCs as the duration of immunosuppression increased. At autopsy, splenomegaly was seen in 3/4 rabbits, but spleens from all 4 rabbit were EBV PCR positive. EBER-in situ hybridization and immunoshistochemistry revealed the presence of a large number of EBER-positive and LMP-1 positive lymphoblasts in the spleens of 3/4 rabbits. To a lesser extent, EBER-positive cells were also seen in the portal tract regions of the liver of these rabbits. Western blotting indicated that EBNA-1 and EBNA-2 were also expressed in the liver and spleen of infected animals.ConclusionEBV can infect healthy rabbits and the infected cells proliferate when the animals are immunocompromised. The infected cells expressed several EBV-latent gene products which are probably driving the proliferation, reminiscent of what is seen in immunocompromised individuals. Further work is required to explore the potential of rabbits as an animal model for studying EBV biology and tumorigenesis.
Epstein-Barr virus (EBV; human herpesvirus 4) is an oncogenic herpesvirus implicated in the pathogenesis of several human malignancies. A number of recent studies indicate that EBV can manipulate the local microenvironment by excreting viral and cellular components in nanovesicles called exosomes. In this study, we investigated the impact of EBV-derived exosomes on apoptosis of recipient cells and the molecular pathway involved in this process. Exosomes from EBV-infected but not from non-infected cells induced apoptosis in a number of different cell types, including B-cells, T-cells and epithelial cells. However, this phenomenon was not universal and the Burkitt's lymphoma-derived B-cell line BJAB was found to be resistant to apoptosis. Exosomes from both type I and type III EBV latently infected cells induced apoptosis in a dose-and time-dependent manner. Moreover, cells exposed to EBV exosomes did not form colonies in soft agar assays. We further show that fluorescently labelled exosomes derived from EBV-infected cells are taken up by non-infected cells and induce apoptosis via the extrinsic pathway. Inhibition of caspase-3/7/8 blocks EBV exosome-mediated apoptosis. Furthermore, our data indicate that EBV exosomes trigger apoptosis through the Fas ligand (FasL)-mediated extrinsic pathway, as FasL was present in EBV exosomal fractions and anti-FasL antibodies could block EBV exosome-mediated apoptosis. Together, these data support the notion that EBV hijacks the exosome pathway to excrete viral and cellular components that can modulate its microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.