Patients with grass pollen allergy, commonly called pollinosis, often present reactivity to pollen allergens from a number of grass species due to cross-reactivity of IgE antibodies to pollen proteins present in pollen grasses. In this context, Italian rye grass (Lolium multiflorum) pollen of the Poaceae family cultivated in Southern Brazil has been considered a major sensitizing agent in patients with pollinosis. In this region, Italian rye grass is capable of producing a great amount of pollen. In addition to L. multiflorum, other Poaceae grasses are naturally grown as weed in Southern Brazil, but with no clinical relevance. Pollen extracts derived from homologous or heterologous grasses are often used for both diagnosis and treatment of seasonal allergy. However, no standardized L. multiflorum pollen extract is commercially available in Brazil and mixed grass extracts are commonly used for diagnosis and immunotherapy of grass pollen allergy. Further studies are required to better characterize the cross-reactivity between L. multiflorum and other grass pollen allergens for improving the diagnosis and immunotherapy to L. multiflorum pollen allergy.
BackgroundGrass pollen, in particular from Lolium multiflorum is a major allergen source in temperate climate zones of Southern Brazil. The IgE sensitization profile of Brazilian grass pollen allergic patients to individual allergen molecules has not been analyzed yet.ObjectiveTo analyze the IgE sensitization profile of a Brazilian grass pollen allergic population using individual allergen molecules.MethodsWe analyzed sera from 78 grass pollen allergic patients for the presence of IgE antibodies specific for 103 purified micro-arrayed natural and recombinant allergens by chip technology. IgE-ELISA inhibition experiments with Lolium multiflorum, Phleum pratense extracts and a recombinant fusion protein consisting of Phl p 1, Phl p 2, Phl p 5 and Phl p 6 were performed to investigate cross-reactivities.ResultsWithin the Brazilian grass pollen allergic patients, the most frequently recognized allergens were Phl p 1 (95%), Phl p 5 (82%), Phl p 2 (76%) followed by Phl p 4 (64%), Phl p 6 (45%), Phl p 11 (18%) and Phl p 12 (18%). Most patients were sensitized only to grass pollen allergens but not to allergens from other sources. A high degree of IgE cross-reactivity between Phleum pratense, Lolium multiflorum and the recombinant timothy grass fusion protein was found.ConclusionsComponent-resolved analysis of sera from Brazilian grass pollen allergic patients reveals an IgE recognition profile compatible with a typical Pooideae sensitization. The high degree of cross-reactivity between Phleum pratense and Lolium multiflorum allergens suggests that diagnosis and immunotherapy can be achieved with timothy grass pollen allergens in the studied population.
Pacientes com alergia a pólen de gramíneas, comumente denominada polinose, freqüentemente apresentam reatividade a alérgenos de pólen de inúmeras gramíneas devido às reatividades cruzadas entre anticorpos IgE dirigidos contra proteínas presentes nos polens de gramíneas. Nesse contexto, pólen de Italian ryegrass (Lolium multiflorum), ou azevém anual, gramínea da família Poaceae cultivada no Sul do Brasil, é considerado o principal agente sensibilizante em pacientes com polinose. Nessa região, o azevém é capaz de produzir grande quantidade de pólen. Adicionalmente, outras gramíneas da família Poaceae crescem naturalmente no Sul, entretanto, sem relevância clínica. Extratos de pólen derivados de gramíneas homólogas ou heterólogas são freqüentemente empregados no diagnóstico e tratamento da alergia sazonal a pólen, sendo que para esses fins não se encontra comercialmente disponível no Brasil extrato padronizado de pólen de L. multiflorum. Futuros estudos serão importantes para melhor caracterizar a reatividade cruzada entre alérgenos de pólen de L. multiflorum e alérgenos de outras gramíneas com o objetivo de aprimorar o diagnóstico e imunoterapia de pacientes com alergia a pólen causada por L. multiflorum.
90% recognition. Lm, Lp and GII extracts significantly inhibited IgE binding to the most immunodominant Lm components, particularly the 55 kDa band. The 26 kDa and 90-114 kDa bands presented the lowest amount of heterologous inhibition. We demonstrated that Lm extract contains both Lm-specific and cross-reactive IgE-binding components and therefore it is suitable for measuring quantitative IgE levels for diagnostic and therapeutic purposes in patients with pollinosis sensitized to Lm grass pollen rather than other phylogenetically related grass pollen extracts.]]>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.