The mechanisms of action of physical agents commonly used to treat skeletal muscle lesions are not well understood. In this study, we examined whether the modulation of oxidative stress is involved in the beneficial effects of cold and heat on gastrocnemius muscle strain injury. Adult male Wistar rats were submitted to a strain injury and treated with therapeutic agents in an isolated or combined form. Strain damage caused an increase in muscle and blood oxidative damage. We suggest that this oxidative damage might be related to the impairment of the muscle cell structure, since we observed a significant positive correlation between increased plasma creatine kinase activity and both oxidized dichlorofluoresceine and lipid peroxidation levels in muscle and blood. The intensity of the inflammatory response appears also to be an important factor in the genesis of oxidative damage immediately following a muscle strain injury. Therapeutic cold seems to be more effective in preventing the damage induced by a strain injury, possibly due to its capacity to control the impairment of muscle cell structure and to modulate the intensity of the inflammatory response that follows a muscle strain injury.
Manganese (Mn) is a metal required by biological systems. However, environmental or occupational exposure to high levels of Mn can produce a neurological disorder called manganism, which has similarities to Parkinson's disease. Diethyl-2-phenyl-2-tellurophenyl vinylphosphonate (DPTVP) is an organotellurium compound with a high antioxidant activity, especially in the brain. The present study was designed to investigate the effects of long-term low-dose exposure to Mn in drinking water on behavioral and biochemical parameters in rats and to determine the effectiveness of vinylic telluride in attenuating the effects of Mn. After 4 months of treatment with MnCl(2) (13.7 mg/kg), rats exhibited clear signs of neurobehavioral toxicity, including a decrease in the number of rearings in the open field and altered motor performance in rotarod. The administration of DPTVP (0.150 micromol/kg, ip, 2 weeks) improved the motor performance of Mn-treated rats, indicating that the compound could be reverting Mn neurotoxicity. Ex vivo, we observed that Mn concentrations in the Mn-treated group were highest in the striatum, consistent with a statistically significant decrease in mitochondrial viability and [(3)H]glutamate uptake, and increased lipid peroxidation. Mn levels in the hippocampus and cortex were indistinguishable from controls, and no significant differences were noted in the ex vivo assays in these areas. Treatment with DPTVP fully reversed the biochemical parameters altered by Mn. Furthermore, DPTVP treatment was also associated with a reduction in striatal Mn levels. Our results demonstrate that DPTVP has neuroprotective activity against Mn-induced neurotoxicity, which may be attributed to its antioxidant activity and/or its effect on striatal Mn transport.
Acetaminophen (APAP) hepatotoxicity has been related to several cases of hepatitis, cirrhosis, and hepatic transplant. As APAP hepatotoxicity is related to reactive oxygen species (ROS) formation and excessive oxidative stress, natural antioxidant compounds have been tested as an alternative therapy to diminish the hepatic dysfunction induced by APAP. Taraxacum officinale Weber (Family Asteraceae), commonly known as dandelion, is used for medicinal purposes because of its choleretic, diuretic, antioxidant, anti-inflammatory, and hepatoprotective properties. This study evaluated the hepatoprotective activity of T. officinale leaf extract against APAP-induced hepatotoxicity. T. officinale was able to decrease thiobarbituric acid-reactive substance levels induced by 200 mg/kg APAP (p.o.), as well as prevent the decrease in sulfhydryl levels caused by APAP treatment. Furthermore, histopathological alterations, as well as the increased levels of serum aspartate and alanine aminotransferases caused by APAP, were prevented by T. officinale (0.1 and 0.5 mg/mL). In addition, T. officinale extract also demonstrated antioxidant activity in vitro, as well as scavenger activity against 2,2-diphenyl-1-picrylhydrazyl and nitric oxide radicals. Our results clearly demonstrate the hepatoprotective effect of T. officinale against the toxicity induced by APAP. The possible mechanisms involved include its scavenger activities against ROS and reactive nitrogen species, which are attributed to the content of phenolic compounds in the extract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.