Lectins are proteins extensively used in biomedical applications with property to recognize carbohydrates through carbohydrate-binding sites, which identify glycans attached to cell surfaces, glycoconjugates, or free sugars, detecting abnormal cells and biomarkers related to diseases. These lectin abilities promoted interesting results in experimental treatments of immunological diseases, wounds, and cancer. Lectins obtained from virus, microorganisms, algae, animals, and plants were reported as modulators and tool markers in vivo and in vitro; these molecules also play a role in the induction of mitosis and immune responses, contributing for resolution of infections and inflammations. Lectins revealed healing effect through induction of reepithelialization and cicatrization of wounds. Some lectins have been efficient agents against virus, fungi, bacteria, and helminths at low concentrations. Lectin-mediated bioadhesion has been an interesting characteristic for development of drug delivery systems. Lectin histochemistry and lectin-based biosensors are useful to detect transformed tissues and biomarkers related to disease occurrence; antitumor lectins reported are promising for cancer therapy. Here, we address lectins from distinct sources with some biological effect and biotechnological potential in the diagnosis and therapeutic of diseases, highlighting many advances in this growing field.
The discovery of new biomarkers associated with cancer, neurological and cardiovascular
diseases is necessary, since these are common, recurrent diseases considered as leading causes of
death in the human population. Molecular signatures of these disorders that can be identified at the
outset of their pathogenesis leading to prompt and targeted treatment may increase patient survival.
Cancer is a heterogeneous disease that can be expressed differently among individuals; in addition,
treatments may have a differentiated approach according to the type of malignant neoplasm. Thus,
these neoplastic cells can synthesize and release specific molecules depending on the site where
carcinogenesis begins. Moreover, life expectancy is increasing especially in developed countries,
however, cases of neurodegenerative diseases have grown in the older members of the population.
Commonly, some neurological disorders, which can occur physiologically by the process of senescence,
are confused with Alzheimer's Disease (AD). In addition, cardiovascular diseases are the
main cause of death in the world; studies capable of identifying, through molecular probes, the beginning
of development of an atherosclerotic process can lead to early treatment to avoid an acute
myocardial infarction. Accuracy in the detection of these biomarkers can be obtained through biosensors
whose design has been increasingly studied to elaborate inexpensive sensory platforms capable
of precise detection, even at low concentrations, of the molecule to be measured. The aim of
this review is to address biomarkers to be used in diagnoses instead of invasive exams; biosensors
for the specific and sensitive detection of these biological markers are also investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.