Mechanosensing bone osteocytes express large amounts of connexin (Cx)43, the component of gap junctions; yet, gap junctions are only active at the small tips of their dendritic processes, suggesting another function for Cx43. Both primary osteocytes and the osteocyte-like MLO-Y4 cells respond to fluid flow shear stress by releasing intracellular prostaglandin E 2 (PGE 2 ). Cells plated at lower densities release more PGE 2 than cells plated at higher densities. This response was significantly reduced by antisense to Cx43 and by the gap junction and hemichannel inhibitors 18 -glycyrrhetinic acid and carbenoxolone, even in cells without physical contact, suggesting the involvement of Cx43-hemichannels. Inhibitors of other channels, such as the purinergic receptor P2X 7 and the prostaglandin transporter PGT, had no effect on PGE 2 release. Cell surface biotinylation analysis showed that surface expression of Cx43 was increased by shear stress. Together, these results suggest fluid flow shear stress induces the translocation of Cx43 to the membrane surface and that unapposed hemichannels formed by Cx43 serve as a novel portal for the release of PGE 2 in response to mechanical strain.
Fluid flow conditioned medium and PGE 2 stimulated cAMP production and PKA activity suggesting that PGE 2 released by mechanically stimulated cells is responsible for the activation of cAMP and PKA. The adenylate cyclase activators, forskolin and 8-bromo-cAMP, enhanced intercellular connectivity, the number of functional gap junctions, and Cx43 protein expression, whereas the PKA inhibitor, H89, inhibited the stimulatory effect of PGE 2 on gap junctions. These studies suggest that the EP 2 receptor mediates the effects of autocrine PGE 2 on the osteocyte gap junction in response to fluid flow-induced shear stress. These data support the hypothesis that the EP 2 receptor, cAMP, and PKA are critical components of the signaling cascade between mechanical strain and gap junction-mediated communication between osteocytes.
Ethanol ingestion during pregnancy elicits damage to the developing brain, some of which appears to result from enhanced apoptotic death of neurons. A consistent characteristic of this phenomenon is a highly differing sensitivity to ethanol within specific neuron populations. One possible explanation for this "selective vulnerability" could be cellular variations in glutathione (GSH) homeostasis. Prior studies have illustrated that ethanol elicits apoptotic death of neurons in the developing brain, that oxidative stress may be an underlying mechanism, and that GSH can be neuroprotective. In the present study, both multiphoton microscopy and flow cytometry demonstrate a striking heterogeneity in GSH content within cortical neuron populations. Ethanol differentially elicits apoptotic death and oxidative stress in these neurons. When neuron GSH content is reduced by treatment with butathione sulfoxamine, the ethanol-mediated enhancement of reactive oxygen species is exacerbated. Sorting of cells into high- and low-GSH populations further exemplifies ethanol-mediated oxidative stress whereby apoptotic indices are preferentially elevated in the low-GSH population. Western blot analysis of the low-GSH subpopulations shows higher ethanol-mediated expression of active caspase 3 and 24-kDa PARP-1 fragments compared with the high-GSH subpopulation. In addition, neuronal content of 4-hydroxynonenal adducts is higher in low-GSH neurons in response to ethanol. These studies suggest that GSH content is an important predictor of neuronal sensitivity to ethanol-mediated oxidative stress and subsequent cell death. The data support the proposition that the differences in proapoptotic responses to ethanol within specific neuron populations reflect a heterogeneity of neuron GSH content.
Osteocytes embedded in the matrix of bone are mechanosensory cells that translate strain into signals and regulate bone remodeling. Our previous studies using osteocyte-like MLO-Y4 cells have shown that fluid flow shear stress (FFSS) increases connexin (Cx) 43 protein expression, prostaglandin E(2) (PGE(2)) release, and intercellular coupling, and PGE(2) is an essential mediator between FFSS and gap junctions. However, the role of Cx43 in the release of PGE(2) in response to FFSS is unknown. Here, the FFSS-loaded MLO-Y4 cells with no or few intercellular channels released significantly more PGE(2) per cell than those cells at higher densities. Antisense Cx43 oligonucleotides and 18 beta-glycyrrhetinic acid, a specific gap junction and hemichannel blocker, significantly reduced PGE(2) release by FFSS at all cell densities tested, especially cells at the lowest density without gap junctions. FFSS, fluid flow-conditioned medium, and PGE(2) increased the activity of dye uptake. Moreover, FFSS induced Cx43 to migrate to the surface of the cell; this surface expressed Cx43 developed resistance to Triton-X-100 solublization. Our results suggest that hemichannels formed by Cx43, instead of intercellular channels, are likely to play a predominant role in the release of intracellular PGE(2) in response to FFSS.
Prior studies by many laboratories have illustrated that ethanol can elicit a cascade of caspasedependent apoptotic events in cultured neurons. Studies in our laboratory have connected this to oxidative stress and effects on fetal cortical neuron glutathione homeostasis.Aims-The intent of the following studies is to address mechanisms underlying ethanolassociated DNA damage that may be connected to apoptotic death of neurons.Methods-Cultures of fetal rat cerebral cortical neurons were utilized. Estimates of DNA damage was determined by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and nuclear condensation; Poly(ADP-ribose) polymerase-1 (PARP-1) expression was determined by immunostaining and Western blotting; and occurrence of parylation and AIF translocations were assessed by Western blotting.Results-Ethanol treatment of the neurons generated increases in DNA damage by 4 hours while nuclear condensation was low at the short exposure period but increased markedly by 24 hours. This was temporally related to a marked up-regulation of PARP-1 expression. Activity of PARP-1, as assessed by PolyADP-ribose (PAR) formation, occurred within 15 minutes and peaked by 6 to 8 hours of ethanol treatment. An almost complete translocation of apoptosis inducing factor (AIF) from mitochondria to the nucleus occurred by 24 hours of ethanol treatment (4.0 mg/ml). Ethanol treatment for 4, 12 and 24 hours elicited an increasing caspase-mediated cleavage of PARP-1 to its 24kDa fragment.Conclusions-These data illustrate the rapid occurrence of DNA damage following ethanol exposure and that PARP-1 pathways may play a role in the subsequent apoptotic death of these neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.