The past decade has witnessed a phenomenal rise in nanotechnology research due to its broad range of applications in diverse fields including food safety, transportation, sustainable energy, environmental science, catalysis, and medicine. The distinctive properties of nanomaterials (nano-sized particles in the range of 1 to 100 nm) make them uniquely suitable for such wide range of functions. The nanoparticles when manufactured using green synthesis methods are especially desirable being devoid of harsh operating conditions (high temperature and pressure), hazardous chemicals, or addition of external stabilizing or capping agents. Numerous plants and microorganisms are being experimented upon for an eco–friendly, cost–effective, and biologically safe process optimization. This review provides a comprehensive overview on the green synthesis of metallic NPs using plants and microorganisms, factors affecting the synthesis, and characterization of synthesized NPs. The potential applications of metal NPs in various sectors have also been highlighted along with the major challenges involved with respect to toxicity and translational research.
Biodegradable polymer polyhydroxyalkanoates are one of the promising alternatives for conventional plastics. The present article focuses on a modified and novel method for the synthesis of poly (3-hydroxybutyrate) (PHB) by two microorganisms, viz. Bacillus megaterium and Cupriavidus necator. These microbial cells were grown over fructose as a carbon source, and the produced PHB was recovered using ultrasound as well as solvent assisted extraction. The extracted PHB was characterized using FTIR, 1 H, and 13 C NMR to observe the functional groups in the PHB molecule. The XRD characterization confirmed the partial crystalline nature of PHB, and the results of TGA, DTG, and DSC analysis attributed to the thermal stability of PHB. The major step of weight loss of PHB derived by B. megaterium and C. necator in TGA analysis was found to be 415°C and 289°C, respectively. These values were comparatively higher than standard PHB, for which it is 260°C. Similarly, the maximum degradation temperature for standard PHB is 236°C, whereas the maximum degradation temperature of PHB synthesized by B. megaterium and C. necator are 248°C and 277°C, respectively. This ascertains that the produced PHB has greater resistance to thermal degradation as compared with PHB standard. The melting point of synthesized PHBs were found to be 175°C to 176°C, which is similar to standard PHB. The glass transition temperature of the synthesized PHBs varies from -8°C to 6°C. The plausible reason behind the variances could be due to difference in crystallinity and molecular weight of polymer matrix. Nevertheless, thermal properties of PHB produced by B. megaterium and C. necator are found to be similar or much better than commercial PHB. The degree of crystallinity of synthesized PHBs are lower than previously reported literatures, which extends its range of applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.