The synthesis of a series of crown ether ligands (C4-C6) based upon the 2,2Ј-biphenyl unit is described. In the series, the length of the polyether chain connecting the two oxygen atoms increases progressively. These polyethers are moderately fluorescent in acetonitrile solution, but this emission is partially quenched upon the addition of various alkali metal cations. Spectrofluorimetric titrations performed with MClO 4 (M = Li + , Na + ) or KPF 6 show that binding to crown ethers C4-C6 involves the formation of a 1:1 cation/ligand complex.
The synthesis of a series of binuclear complexes comprising bis(2,2':6',2' '-terpyridine)ruthenium(II) and -osmium(II) centers connected via a geometrically constrained 4,4'-biphenyl bridge is described. These compounds have been prepared by a "synthesis-at-metal" approach as well as by the conventional method of synthesizing the ligand and subsequently attaching the metal center. A computational investigation into the behavior of the biphenyl-based bridges has been used to provide lowest-energy conformations and to estimate the degree of internal fluctuation about the mean torsion angle. It is shown that the length of the constraining strap determines both the torsion angle and the internal flexibility, with longer straps twisting the biphenyl group so as to relax stereochemical interactions between the linking oxygen atoms. Longer straps can be formed from poly(ethylene glycol) residues that provide an additional binding site for small cations. Electrospray mass spectrometry carried out on solutions of these crown ether-like bridges confirmed that Li+, Na+, and K+ ions bind in the form of 1:1 complexes. This range of compounds should permit rational examination of how the torsion angle affects the rate of through-bond electron transfer, electron exchange, and charge shift.
The photophysical properties are reported for a series of binuclear ruthenium(II) bis(2,2':6',2"-terpyridine) complexes built around a geometrically constrained, biphenyl-based bridge. The luminescence quantum yield and lifetime increase progressively with decreasing temperature, but the derived rate constant for nonradiative decay of the lowest-energy triplet state depends on the length of a tethering strap attached at the 2,2'-positions of the biphenyl unit. Since the length of the strap determines the dihedral angle for the central C-C bond, the rate of nonradiative decay shows a pronounced dependence on angle. The minimum rate of nonradiative decay occurs when the dihedral angle is 90 degrees, but there is a maximum in the rate when the dihedral angle is about 45 degrees. This effect does not appear to be related to the extent of electron delocalization at the triplet level but can be explained in terms of variable coupling with a low-frequency vibrational mode associated with the strapped biphenyl unit.
The rate constant for triplet energy transfer (k(TET)) has been measured in fluid solution for a series of mixed-metal Ru-Os bis(2,2':6',2''-terpyridine) complexes built around a tethered biphenyl-based spacer group. The length of the tether controls the central torsion angle for the spacer, which can be varied systematically from 37 to 130 degrees . At low temperature, but still in fluid solution, the spacer adopts the lowest-energy conformation and k(TET) shows a clear correlation with the torsion angle. A similar relationship holds for the inverse quantum yield for emission from the Ru-terpy donor. Triplet energy transfer is more strongly activated at higher temperature and the kinetic data require analysis in terms of two separate processes. The more weakly activated step involves electron exchange from the first-excited triplet state on the Ru-terpy donor and the size of the activation barrier matches well with that calculated from spectroscopic properties. The pre-exponential factor derived for this process correlates remarkably well with the torsion angle and there is a large disparity in electronic coupling through pi and sigma orbitals on the spacer. The more strongly activated step is attributed to electron exchange from an upper-lying triplet state localized on the Ru-terpy donor. Here, the pre-exponential factor is larger but shows the same dependence on the geometry of the spacer. Strangely, the difference in coupling through pi and sigma orbitals is much less pronounced. Despite internal flexibility around the spacer, k(TET) shows a marked dependence on the torsion angle computed for the lowest-energy conformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.