The manuscript aims at furnishing comprehensive information pertaining specialised coating technology/ processes. Solid dosage forms and solid particulates (SDFSP) are the major contributing group in the solid pharmaceuticals (SoPs). SDFSP exhibit peculiar physico-chemical properties and interaction behaviour which create problems/ issues during their handling, processing, storage, and use. Modifying and/or engineering surface attributes of SDFSP are advocated as powerful tool to modify their interaction behaviour and realise their worthy applications and functionalities. In this regard coating their surfaces with coating material (CM) is novel approach. Said approach involves wet and dry process for realising deposition of CM onto the surface of SDFSP substrates. Both the processes modify and/or alter innate properties of SDFSP substrates either physically or chemically. Basing on involved wet or dry process the coating method is either dry coating method (DCM) or wet coating method (WCM). Accordingly nowadays there available number of specialised devices, that bases on diverse technologies. Amongst them some involves state-of-art process/ technology like Supercell coating technology (SCT), Chemical vapour deposition (CVD), Atomic/molecular layer deposition (AMLD), Electrostatic deposition, Thermo-mechanical process, Resonant acoustic technology, Fluidised-bed process, Supercritical fluid (SCF) technology, and others. These foundational for commercially availability of specialised equipments like Magnetically Assisted Impaction Coater (MAIC), Resodyn acoustic mixer, Hybridizer®, Theta-composer®. Mechanofusion®, and others. Working and working principle, applicability, benefits, pros and limitations of specialised coating processes and technologies are herein discussed and presented. Contained information hoped to be beneficent for pharmaceutical professionals and technocrats and professionals of allied field. Keywords: Coating, composite product, modification, specialised, surface.
The manuscript aims to provide glimpse on updated information relating thermo-mechanical dry coating processes (TMDCP) suiting in modifying surface attributes of fine and ultra-fine particle (FiUlFiP). FiUlFiPs are the integral component of pharmaceutical processes. They exhibit complex and queer properties, are conferred mostly from their surface attributes colligated with their higher surface area. Particle engineering technocrats extensively working for modifying surface & surface attributes of FiUlFiPs. These efforts are to find their worthy applications & new functionalities. Among available diverse particle engineering technologies/ process, TMDCP, a dry coating process (DCP), advocated being worthy and efficient. The TMDCP finds multidisciplinary applications, mostly in drug development & drug delivery. Said DCP involves fixing and/or attaching coating material (CoM) as particles herein synonym guest particle (GP) onto core/substrate particle (CSP) herein synonym host particle (HP). Attaching/ fixing the GPs onto HPs, in TMDCP, involve their mechanical and/or thermal interactions. Scientific literatures are evidencing diverse techniques and/or process, basing on discussed interactions. Amongst them novel techniques/ processes are Hybridization, Magnetically assisted impaction coating process (MAICP), Mechanofusion, Theta-composer, and high shear compaction. In this area diverse devices/ equipments are prevailing in market. Important are Hybridizer, Magnetically assisted impaction coater (MAIC), Theta-composer, Mechanofusion, Quadro Comil®, Cyclomix®, and many others. Attempt of this article is to discuss and present their method of working, working principle, applicability, limitations, and benefits. Contained information might be beneficial for professionals of pharmaceutical and allied field. Keywords: dry coating, equipment, particles, processes, thermo-mechanical.
Olibanum and its resin and carbohydrate fractions were evaluated as rate controlling matrix materials in tablets for controlled release of diclofenac. Diclofenac matrix tablets were formulated employing olibanum and its resin and carbohydrate fractions in different concentrations and the tablets were evaluated for various tablet characters including drug release kinetics and mechanism. Olibanum and its resin component exhibited excellent retarding effect on drug release from the matrix tablets even at very low concentrations, 1 and 2% w/w in the formula. Diclofenac matrix tablets formulated employing olibanum and its resin component provided slow and controlled release of diclofenac over more than 24 h. Drug release from the matrix tablets was by Fickian diffusion and followed first order kinetics. Diclofenac release from some of the formulated tablets was comparable to that of Voveran SR tablets.
Olibanum resin was evaluated as microencapsulating agent and to prepare resin coated microcapsules. Olibanum resin coated microcapsules of indomethacin were prepared by an industrially feasible emulsification-solvent evaporation method and the microcapsules were investigated. The resin-coated microcapsules are spherical, discrete, free-flowing and multinucleate monolithic type. Microencapsulation efficiency was in the range 99-112 %. Indomethacin release from the resin-coated microcapsules was slow over 24 h and depended on core: coat ratio, wall thickness and size of the microcapsules. Drug release was by fickian diffusion mechanism. Good linear relationships were observed between wall thickness of microcapsules and release rate (K 1 ) and T 50 values. Resin coated microcapsules exhibited good controlled release characteristic and were found suitable for once a day oral controlled release products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.