As one of the hot topics in the field of computer vision research, face recognition technology has received significant attention due to its potentiality for a wide range of applications in government as well as commercial purposes. In practical applications, although several existing face recognition methods have achieved good performances in specific scenes, they easily suffer from a sharp decline in recognition rate if affected by different conditions of light, expression, posture and occlusion. Among many factors, influences of complex illuminations on face recognition are particularly significant. To further improve the performance of the existing local binary pattern (LBP) operator, neighbourhood weighted average LBP (NWALBP) is first proposed for fully considering the strong correlations between pixel pairs in the neighbourhood, which extends the traditional LBP uni-layer neighbourhood template window to the bi-layer neighbourhood template window and calculates the weighted average of bi-layer neighbourhood pixels in each direction. Then, inspired by centre symmetric LBP (CS-LBP), centre symmetric NWALBP (CS-NWALBP) is further proposed, which can effectively reduce computation complexity by only comparing the weighted average values of the neighbourhood pixels that are symmetric about the centre pixel. Finally, by combining the merit of histogram of oriented gradient (HOG), a feature fusion algorithm named CS-NWALBP+HOG is suggested. Several experiments have eventually demonstrated that our proposed algorithms have more robust performance under complex illumination conditions if compared with many other latest algorithms.
Adaptive modulation and diversity combining represent very important adaptive solutions for the future generations of communication systems. In order to improve the performance and the efficiency of wireless communication systems these two techniques have been recently used jointly in new schemes named joint adaptive modulation and diversity combining .The highest spectral efficiency with the lowest possible combining complexity, given the fading channel conditions and the required error rate performance. Increase the spectral efficiency with a slight increase in the average number of combined path for the low signal to noise ratio (SNR) range while maintaining compliance with the bit error rate (BER).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.