Eosinophilic esophagitis (EoE) is a recently recognized inflammatory disorder driven by food hypersensitivity; however, the specific foods and mechanisms involved are unclear. In patients with EoE, we have found that hypersensitivities to corn and peanuts are the most common. Accordingly, we sensitized and exposed mice either intranasally or intragastrically with corn or peanut extract or saline. Esophageal eosinophilia, the genes of eosinophil-directed cytokines, and allergen-induced antibodies were examined in mice challenged with corn or peanut extract or saline. A high number of esophageal lamina propria eosinophils as well as eosinophilic microabscesses, intraepithelial eosinophils, extracellular eosinophilic granules, thickened and disrupted epithelial mucosa, and mast cell hyperplasia were observed in the esophagus of peanut or corn allergen-challenged mice. Mechanistic analysis indicated that para-esophageal lymph nodes might be critical in the trafficking of eosinophils to the esophagus and in EoE association to airway eosinophilia. Furthermore, experimentation with gene-targeted mice revealed that peanut allergen-induced EoE was dependent on eotaxin and invariant natural killer T (iNKT) cells, as CD1d and eotaxin-1/2 gene-deficient mice were protected from disease induction. Thus we provide evidence that para-esophageal lymph nodes are involved in food- or aeroallergen-induced eosinophilia and patchy EoE pathogenesis, likely a mechanism dependent on eotaxins and iNKT cells.
Eosinophilic esophagitis (EoE) is an emerging chronic esophageal disease. Despite the increasing diagnosis of EoE globally, the causes of EoE and other esophageal eosinophilic disorders are not clearly understood. EoE pathology includes accumulation of inflammatory cells (e.g., eosinophils, mast cells), characteristic endoscopic features (e.g., furrows, the formation of fine concentric mucosal rings, exudates), and functional impairments (e.g., esophageal stricture, dysmotility). We hypothesized that the esophageal structural pathology and functional impairments of EoE develop as a consequence of the effector functions of the accumulated inflammatory cells. We analyzed eosinophils (anti-major basic protein immunostaining), esophageal stricture (X-ray barium swallowing), and esophageal motility (isometric force) in two established transgenic murine models of EoE (CD2-IL-5 and rtTA-CC10-IL-13) and a novel eosinophil-deficient model (ΔdblGATA/CD2-IL-5). Herein, we show the following: 1) CD2-IL-5 and doxycycline (DOX)-induced rtTA-CC10-IL-13 mice have chronic eosinophilic and mast cell esophageal inflammation; 2) eosinophilic esophageal inflammation promotes esophageal stricture in both transgenic murine models; 3) the eosinophil-deficient ΔdblGATA/CD-2-IL-5 mice were protected from the induction of stricture, whereas the eosinophil-competent CD2-IL-5 mice develop esophageal stricture; 4) esophageal stricture is not reversible in DOX-induced rtTA-CC10-IL-13 mice (8 wk DOX followed by 8 wk no-DOX); and 5) IL-5 transgene-induced (CD2-IL-5) EoE evidences esophageal dysmotility (relaxation and contraction) that is independent of the eosinophilic esophageal inflammation: CD2-IL-5 and ΔdblGATA/CD2-IL-5 mice have comparable esophageal dysmotility. Collectively, our present study directly implicates chronic eosinophilic inflammation in the development of the esophageal structural impairments of experimental EoE.
Capsule Summary
The current studies demonstrate a critical role of IL-18 in transforming IL-5 generated naïve eosinophils into the distinct inflammatory CD101+CD274+ expressing mature and activated tissue eosinophils that promote disease pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.