Understanding the genes that govern tea plant (Camellia sinensis) architecture and response to drought stress is urgently needed to enhance breeding in tea with improved water use efficiency. Field drought is a slow mechanism and the plants go through an adaptive process in contrast to the drastic changes of rapid dehydration in case of controlled experiments. We identified a set of drought responsive genes under controlled condition using SSH, and validated the identified genes and their pattern of expression under field drought condition. The study was at three stages of water deficit stress viz., before wilting, wilting and recovery, which revealed a set of genes with higher expression at before wilting stage including dehydrin, abscissic acid ripening protein, glutathione peroxidase, cinnamoyl CoA reductase, calmodulin binding protein. The higher expression of these genes was related with increase tolerance character of DT/TS-463 before wilting, these five tolerant progenies could withstand drought stress and thus are candidates for breeding. We observed that physiological parameter like water use efficiency formed a close group with genes such as calmodulin related, DRM3, hexose transporter, hydrogen peroxide induced protein, ACC oxidase, lipase, ethylene responsive transcription factor and diaminopimelate decarboxylase, during wilting point. Our data provides valuable information for the gene components and the dynamics of gene expression in second and third leaf against drought stress in tea, which could be regarded as candidate targets potentially associated with drought tolerance. We propose that the identified five tolerant progenies on the basis of their drought tolerance can thus be utilised for future breeding programmes.
Darjeeling teas are the highest grown teas in the world and preferred for its flavour, aroma and quality. Apart from the genetic makeup of the plant, earlier reports suggest that insect infestation, particularly jassids and thrips triggers the aroma and flavour formation in Darjeeling tea. The present work encompasses the identification of the genes/transcriptomes responsible for the typical flavour of Darjeeling tea, besides understanding the role of jassids and thrips in particular, in producing the best cup character and quality. The quantitative real time PCR analysis was based on a suppression subtractive hybridisation forward library of B157 (tea clone infested with thrips), providing us transcripts related to aroma and flavour formation. We observed the expression of genes like leucine zipper, ntd, nced, geraniol synthase, raffinose synthase, trehalose synthase, amylase, farnesyl transferase, catalase, methyl transferase, linalool synthase, peroxidases, elicitor responsive proteins, linamarase, nerolidol linalool synthase 2, 12-oxophytodienoate reductase, glucosidase, MYB transcription factor, and alcohol dehydrogenase, highly regulated due to insect infestation, manufacturing stresses and mechanical injury. The first report on gene expression dynamics in thrips infested Darjeeling tea leaves can be extrapolated with increase in volatiles which is responsible for enhancing the quality of Darjeeling tea, specially the flavour and aroma of the infusion. We hope to model these responses in order to understand the molecular changes that occur during Darjeeling tea flavour formation.
A cDNA-AFLP approach was used to identify transcript and/or genes specifically expressed in response to drought in tea. Drought was artificially induced and whole genome transcript profiling was done at three different stages-6 days before wilting, 3 days before wilting and at wilting stage of both tolerant and susceptible cultivars, and genetic differences was thus visualized as polymorphisms in the transcriptome. The cDNA-AFLP technique allowed genes and transcripts to be identified in the tolerant genotype (TV-23) whose expression is responsive to drought stress. The cluster analysis revealed two types of clustering-type I separated the tolerant and susceptible cultivar, whereas type II separated the time point of sample and this may be grouped as early and late responsive transcripts. 108 transcript derived fragments were identified as differentially expressed in tolerant genotypes of which 89 sequences could be obtained. Fifty-nine of them showed homology in the public databases. Functional ontology showed genes related to carbohydrate metabolism, response to stress, protein modification process and translation. Cluster I includes five fragments and cluster II includes 25 fragments. Other genes strongly expressed in response to drought in tolerant genotype would help us in identifying and determining the genetic basis of mechanisms involved in conferring drought tolerance in tea.
Background Alternaria brassicae, the causal organism of Alternaria blight, is a necrotroph infecting crops of the Brassicaceae family at all growth stages. To circumvent this problem, several disease management strategies are being used in the field, and disease-resistant varieties have also been developed. However, no strategy has proven completely successful, owing to the high variability in virulence among A. brassicae isolates, which causes a diverse spectrum of symptoms. Nonhost resistance (NHR) is a robust and broad-spectrum defense mechanism available in plants, and the exploitation of gene pools from plant species that are nonhost to A. brassicae could serve as novel sources of resistance. Methodology We searched the literature using key words relevant to this study in various search engines, such as PubMed, Web of Science, and Google Scholar, as well as certain journal websites. The literature was retrieved, sorted, and mined to extract data pertinent to the present review. Results In this review, we have comprehensively covered the recent progress made in developing Alternaria blight resistance in Brassica crops by exploiting host germplasm. We also enumerate the potential NHR sources available for A. brassicae and the NHR layers possibly operating against this pathogen. In addition, we propose different strategies for identifying NHR-related genes from nonhost plants and testing their relevance in imparting broad-spectrum resistance when transferred to host plants. Conclusion This review will help broaden the current knowledge base pertaining to the resistance sources available in host germplasm, the exploitation of NHR mechanisms, and their applications in protecting Brassica crops from Alternaria blight. The insights might also be applicable to a wider repertoire of plant pathogens.
Alternaria blight, caused by Alternaria brassicae, causes considerable yield loss in Brassica crops. While several blight-resistant varieties have been developed using resistance sources from host germplasm, none of them are entirely successful in imparting durable resistance. This has prompted the exploration of novel gene pools of nonhost plant species. Nonhost resistance (NHR) is a durable form of resistance, comprising pre- and postinvasion layers of defense. We aimed to identify the molecular basis of NHR to A. brassicae and identify the layers of NHR operating in a nonhost, chickpea (Cicer arietinum). To elucidate the layers of NHR operating against A. brassicae, we compared the histopathology and infection patterns of A. brassicae in C. arietinum and Brassica juncea. Delayed conidial germination, impeded hyphal growth, suppressed appressorium formation, and limited hyphal penetration occurred in the nonhost plant compared with the host plant, implying the involvement of the preinvasion layer of NHR in C. arietinum. Next, we investigated the molecular basis of robust NHR, in C. arietinum challenged with A. brassicae, by microarray-based global transcriptome profiling. Genes involved in stomatal closure, cuticular wax biosynthesis, cell-wall modification, and secondary metabolite production (contributing to preinvasion NHR) as well as reactive oxygen species (ROS) and cell death (contributing to postinvasion NHR) were found to be upregulated. Consistent with transcriptomic analysis, the morpho-pathological analysis revealed stomatal closure, ROS accumulation, and localized cell death in C. arietinum as the defense strategies against A. brassicae. Thus, we identified NHR-contributing genes with potential applications in blight resistance gene transfer to B. juncea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.