Nutrients are indispensable elements required for the growth of all living organisms including plants and pathogens. Phyllosphere, rhizosphere, apoplast, phloem, xylem, and cell organelles are the nutrient niches in plants that are the target of bacterial pathogens. Depending upon nutrients availability, the pathogen adapts various acquisition strategies and inhabits the specific niche. In this review, we discuss the nutrient composition of different niches in plants, the mechanisms involved in the recognition of nutrient niche and the sophisticated strategies used by the bacterial pathogens for acquiring nutrients. We provide insight into various nutrient acquisition strategies used by necrotrophic, biotrophic, and hemibiotrophic bacteria. Specifically we discuss both modulation of bacterial machinery and manipulation of host machinery. In addition, we highlight the current status of our understanding about the nutrient acquisition strategies used by bacterial pathogens, namely targeting the sugar transporters that are dedicated for the plant’s growth and development. Bacterial strategies for altering the plant cell membrane permeability to enhance the release of nutrients are also enumerated along with in-depth analysis of molecular mechanisms behind these strategies. The information presented in this review will be useful to understand the plant–pathogen interaction in nutrient perspective.
Depriving bacterial pathogens of sugars is a potential plant defense strategy. The relevance of SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTERS (SWEETs) in plant susceptibility to pathogens has been established, but their role in plant defense remains unknown. We identified Arabidopsis thaliana SWEETs (AtSWEETs) involved in defense against nonhost and host Pseudomonas syringae pathogens through reverse genetic screening of atsweet1-17 mutants. Double/triple mutant, complementation, and overexpression line analysis, and apoplastic sucrose estimation studies revealed that AtSWEET12 suppresses pathogen multiplication by limiting sucrose availability in the apoplast. Localization studies suggested that plant defense occurred via increased plasma membrane targeting of AtSWEET12 with concomitant AtSWEET11 protein reduction. Moreover, the heterooligomerization of AtSWEET11 and AtSWEET12 was involved in regulating sucrose transport. Our results highlight a PAMP-mediated defense strategy against foliar bacterial pathogens whereby plants control AtSWEET11-mediated sucrose efflux in the apoplast through AtSWEET12. We uncover a fascinating new mechanism of pathogen starvation as a broad-spectrum disease resistance mechanism in parallel with existing immune pathways.
Background
Alternaria brassicae, the causal organism of Alternaria blight, is a necrotroph infecting crops of the Brassicaceae family at all growth stages. To circumvent this problem, several disease management strategies are being used in the field, and disease-resistant varieties have also been developed. However, no strategy has proven completely successful, owing to the high variability in virulence among A. brassicae isolates, which causes a diverse spectrum of symptoms. Nonhost resistance (NHR) is a robust and broad-spectrum defense mechanism available in plants, and the exploitation of gene pools from plant species that are nonhost to A. brassicae could serve as novel sources of resistance.
Methodology
We searched the literature using key words relevant to this study in various search engines, such as PubMed, Web of Science, and Google Scholar, as well as certain journal websites. The literature was retrieved, sorted, and mined to extract data pertinent to the present review.
Results
In this review, we have comprehensively covered the recent progress made in developing Alternaria blight resistance in Brassica crops by exploiting host germplasm. We also enumerate the potential NHR sources available for A. brassicae and the NHR layers possibly operating against this pathogen. In addition, we propose different strategies for identifying NHR-related genes from nonhost plants and testing their relevance in imparting broad-spectrum resistance when transferred to host plants.
Conclusion
This review will help broaden the current knowledge base pertaining to the resistance sources available in host germplasm, the exploitation of NHR mechanisms, and their applications in protecting Brassica crops from Alternaria blight. The insights might also be applicable to a wider repertoire of plant pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.