Regenerative medicine aims to restore damaged cells, tissues, and organs, for which growth factors are vital to stimulate regenerative cellular transformations. Major advances have been made in growth factor engineering and delivery like the development of robust peptidomimetics and controlled release matrices. However, their clinical applicability remains limited due to their poor stability in the body and need for careful regulation of their local concentration to avoid unwanted side-effects. In this study, a strategy to overcome these limitations is explored using engineered living materials (ELMs), which contain live microorganisms that can be programmed with stimuliresponsive functionalities. Specifically, the development of an ELM that releases a pro-angiogenic protein in a light-regulated manner is described. This is achieved by optogenetically engineering bacteria to synthesize and secrete a vascular endothelial growth factor peptidomimetic (QK) linked to a collagen-binding domain. The bacteria are securely encapsulated in bilayer hydrogel constructs that support bacterial functionality but prevent their escape from the ELM. In situ control over the release profiles of the proangiogenic protein using light is demonstrated. Finally, it is shown that the released protein is able to bind collagen and promote angiogenic network formation among vascular endothelial cells, indicating the regenerative potential of these ELMs.
Despite their promise, the application of growth factors in regenerative medicine is limited by their poor stability in the body, high costs of production/storage and need for localized and tightly controlled delivery to minimize adverse side effects. In this study, a unique strategy to overcome these limitations is explored based on engineered living materials (ELMs). These are an emerging class of composite materials, which contain live microorganisms that can be engineered to produce and secrete proteins in response to external stimuli. Herein, the development of an ELM that light-responsively releases a pro-angiogenic protein is described. This is achieved by optogenetically engineering bacteria to synthesize and secrete a fusion protein containing a vascular endothelial growth factor peptidomimetic linked to a collagen-binding domain. The bacteria are securely encapsulated in bilayer hydrogel constructs that support bacterial functionality but prevent their escape from the ELM. The possibility to switch protein release ON and OFF with light and to tune the amount released with different light intensities is demonstrated. Finally, it is shown that the released protein is active through its ability to bind to collagen and promote angiogenic network formation in human vascular endothelial cell cultures, indicating the regenerative potential of these ELMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.