Dengue fever has been a global health concern. Mitigation is a challenging problem due to non-availability of workable treatments. The most difficult objective is to design a perfect anti-dengue agent capable of inhibiting infections caused by all four serotypes. Various tactics have been employed in the past to discover dengue antivirals, including screening of chemical compounds against dengue virus enzymes. The objective of the current study is to investigate phytocompounds as anti-dengue remedies that target the non-structural 2B and non-structural 3 protease (NS2B-NS3
pro
), a possible therapeutic target for dengue fever. Initially, 300 + antiviral phytocompounds were collected from Duke’s phytochemical and ethnobotanical database and 30 phytocompounds with anti-dengue properties were identified from previously reported studies, which were virtually screened against NS2B-NS3
pro
using molecular docking and toxicity evaluation. The top five most screened ligands were naringin, hesperidin, gossypol, maslinic acid and rhodiolin with binding affinities of − 8.7 kcal/mol, − 8.5 kcal/mol, − 8.5 kcal/mol, − 8.5 kcal/mol and − 8.1 kcal/mol, respectively. The finest docked compounds complexed with NS2B-NS3
pro
were subjected for molecular dynamics (MD) simulations and binding free energy estimations through molecular mechanics generalized born surface area–based calculations. The results of the study are intriguing in the context of computer-aided screening and the binding affinities of the phytocompounds, proposing maslinic acid (MAS) as a potent bioactive antiviral for the development of phytocompound-based anti-dengue agent.
Graphical abstract
Supplementary Information
The online version contains supplementary material available at 10.1007/s00894-022-05355-w.
Oxidation of 36 monosubstituted benzaldehydes by pyridinium bromochromate (PBC) in dimethyl sulfoxide (DMSO), leads to the formation of corresponding benzoic acids. The reaction is first order with respect to both PBC and aldehydes. The reaction is promoted by hydrogen ions; the hydrogen–ion dependence has the form kobs = a + b[H+]. The oxidation of [2H]benzaldehyde (PhCDO) exhibited a substantial primary kinetic isotope effect. The reaction was studied in 19 different organic solvents and the effect of solvent was analysed using Taft's and Swain's multi-parametric equations. The rates of oxidation of para- and meta-substituted benzaldehydes showed excellent correlation in terms of Charton's triparametric LDR equation, whereas the oxidation of ortho-substituted benzaldehydes were correlated well with the tetraperametric LDRS equation. The oxidation of para-substituted benzaldehydes is more susceptible to the delocalized effect than is that of ortho- and meta-substituted compounds, which display a greater dependence on the field effect. The positive value of η suggests the presence of an electron-deficient reaction centre in the rate-determining step. The reaction is subjected to steric acceleration by the ortho-substituents. A suitable mechanism has been proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.