BackgroundNumerous reports have described the epidemiological and clinical characteristics of influenza A (H1N1) 2009 infected patients. However, data on the effects of bacterial coinfection on these patients are very scarce. Therefore, this study explores the impact of bacterial coinfection on the clinical and laboratory parameters amongst H1N1 hospitalized patients.FindingsThis retrospective study involved hospitalized patients with laboratory-confirmed H1N1 infections (September 2009 to May 2010). Relevant clinical data and the detection of bacterial coinfection from respiratory or sterile site samples were obtained. Multiplex PCR was used to determine the co-existence of other respiratory viruses. Comparison was made between patients with and without bacterial coinfection. The occurrence of coinfection was 34%; 14 (28%) bacterial and only 3 (6%) viral. Mycoplasma pneumoniae (n = 5) was the commonest bacteria followed by Staphylococcus aureus (n = 3). In univariate analysis, clinical factors associated with bacterial coinfection were age > 50 years (p = 0.02), presence of comorbidity (p = 0.04), liver impairment (p = 0.02), development of complications (p = 0.004) and supplemental oxygen requirement (p = 0.02). Leukocytosis (p = 0.02) and neutrophilia (p = 0.004) were higher in bacterial coinfected patients. Multivariate logistic regression analysis revealed that age > 50 years and combined complications were predictive of bacterial coinfection.ConclusionsBacterial coinfection is not uncommon in H1N1 infected patients and is more frequently noted in the older aged patients and is associated with higher rates of complications. Also, as adjunct to clinical findings, clinicians need to have a higher index of suspicion if neutrophilia was identified at admission as it may denote bacterial coinfection.
We report the whole-genome sequences of two carbapenem-resistant clinical isolates of Klebsiella quasipneumoniae subsp. similipneumoniae obtained from two different patients. Both strains contained three different extended-spectrum β-lactamase genes and showed strikingly high pairwise average nucleotide identity of 99.99% despite being isolated 3 years apart from the same hospital.
Andrographis paniculata is a local medicinal plant that is widely cultivated in Malaysia. It is comprised of numerous bioactive compounds that can be isolated using water, ethanol or methanol. Among these compounds, andrographolide has been found to be the major compound and it exhibits varieties of pharmacological activities, including anti-cancer properties, particularly in the lipid-dependent cancer pathway. Lipids act as crucial membrane-building elements, fuel for energy-demanding activities, signaling molecules, and regulators of several cellular functions. Studies have shown that alterations in lipid composition assist cancer cells in changing microenvironments. Thus, compounds that target the lipid pathway might serve as potential anti-cancer therapeutic agents. The purpose of this review is to provide an overview of the medicinal chemistry and pharmacology of A. paniculata and its active compounds in terms of anti-cancer activity, primary mechanism of action, and cellular targets, particularly in the lipid-dependent cancer pathway.
Neurodegenerative disorders, such as Parkinson's and Alzheimer's disease, are claimed to be of major concern causing a significant disease burden worldwide. Oxidative stress, mitochondrial dysfunction and nerve damage are the main reasons for the emergence of these diseases. The formation of reactive oxygen species (ROS) is the common chemical molecule that is formed from all these three interdependent mechanisms which is highly reactive toward the neuronal cells. For these reasons, the administration of tocotrienols (T3s), which is a potent antioxidant, is proven to cater to this problem, through in vitro and in vivo investigations. Interestingly, their therapeutic potentials are not only limited to antioxidant property but also to being able to reverse the neuronal damage and act as a shield for mitochondria dysfunction. Thereby, T3s prevents the damage to the neurons. In regards to this statement, in this review, we focused on summarizing and discussing the potential therapeutic role of T3s on Alzheimer's and Parkinson's diseases, and their protective mechanisms based on evidence from the in vitro and in vivo studies. However, there is no clinical trial conducted to prove the efficacy of T3s for Alzheimer's and Parkinson's subjects. As such, the therapeutic role of T3s for these neurodegenerative disorders is still under debate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.