Rapid development of nanotechnology has been in high demand, especially for silver nanoparticles (AgNPs) since they have been proven to be useful in various fields such as medicine, textiles, and household appliances. AgNPs are very important because of their unique physicochemical and antimicrobial properties, with a myriad of activities that are applicable in various fields, including wound care management. This review aimed to elucidate the underlying mechanisms of AgNPs that are responsible for their antiviral properties and their antibacterial activity towards the microorganisms. AgNPs can be synthesized through three different methods—physical, chemical, and biological synthesis—as indicated in this review. The applications and limitations of the AgNPs such as their cytotoxicity towards humans and the environment, will be discussed. Based on the literature search obtained, the properties of AgNPs scrutinizing the antibacterial or antiviral effect shown different interaction towards bacteria which dependent on the synthesis processes followed by the morphological structure of AgNPs.
Collagen (Col) and gelatin are most extensively used in various fields, particularly in pharmaceuticals and therapeutics. Numerous researchers have proven that they are highly biocompatible to human tissues, exhibit low antigenicity and are easy to degrade. Despite their different sources both Col and gelatin have almost the same effects when it comes to wound healing mechanisms. Considering this, the bioactivity and biological effects of both Col and gelatin have been, and are being, constantly investigated through in vitro and in vivo assays to obtain maximum outcomes in the future. With regard to their proven nutritional values as sources of protein, Col and gelatin products exert various possible biological activities on cells in the extracellular matrix (ECM). In addition, a vast number of novel Col and gelatin applications have been discovered. This review compared Col and gelatin in terms of their structures, sources of derivatives, physicochemical properties, results of in vitro and in vivo studies, their roles in wound healing and the current challenges in wound healing. Thus, this review provides the current insights and the latest discoveries on both Col and gelatin in their wound healing mechanisms.
Cellulose is a naturally existing element in the plant’s cell wall and in several bacteria. The unique characteristics of bacterial cellulose (BC), such as non-toxicity, biodegradability, hydrophilicity, and biocompatibility, together with the modifiable form of nanocellulose, or the integration with nanoparticles, such as nanosilver (AgNP), all for antibacterial effects, contributes to the extensive usage of BC in wound healing applications. Due to this, BC has gained much demand and attention for therapeutical usage over time, especially in the pharmaceutical industry when compared to plant cellulose (PC). This paper reviews the progress of related research based on in vitro, in vivo, and clinical trials, including the overall information concerning BC and PC production and its mechanisms in wound healing. The physicochemical differences between BC and PC have been clearly summarized in a comparison table. Meanwhile, the latest Food and Drug Administration (FDA) approved BC products in the biomedical field are thoroughly discussed with their applications. The paper concludes on the need for further investigations of BC in the future, in an attempt to make BC an essential wound dressing that has the ability to be marketable in the global marketplace.
Alzheimer’s disease (AD) is the most common form of neurodegenerative disorders affecting mostly the elderly. It is characterized by the presence of Aβ and neurofibrillary tangles (NFT), resulting in cognitive and memory impairment. Research shows that alteration in gut microbial diversity and defects in gut brain axis are linked to AD. Probiotics are known to be one of the best preventative measures against cognitive decline in AD. Numerous in vivo trials and recent clinical trials have proven the effectiveness of selected bacterial strains in slowing down the progression of AD. It is proven that probiotics modulate the inflammatory process, counteract with oxidative stress, and modify gut microbiota. Thus, this review summarizes the current evidence, diversity of bacterial strains, defects of gut brain axis in AD, harmful bacterial for AD, and the mechanism of action of probiotics in preventing AD. A literature search on selected databases such as PubMed, Semantic Scholar, Nature, and Springer link have identified potentially relevant articles to this topic. However, upon consideration of inclusion criteria and the limitation of publication year, only 22 articles have been selected to be further reviewed. The search query includes few sets of keywords as follows. (1) Probiotics OR gut microbiome OR microbes AND (2) Alzheimer OR cognitive OR aging OR dementia AND (3) clinical trial OR in vivo OR animal study. The results evidenced in this study help to clearly illustrate the relationship between probiotic supplementation and AD. Thus, this systematic review will help identify novel therapeutic strategies in the future as probiotics are free from triggering any adverse effects in human body.
Collagen type I (Col-I) is unique due to its high biocompatibility in human tissue. Despite its availability from various sources, Col-I naturally mimics the extracellular matrix (ECM) and generally makes up the larger protein component (90%) in vasculature, skin, tendon bone, and other tissue. The acceptable physicochemical properties of native Col-I further enhance the incorporation of Col-I in various fields, including pharmaceutical, cosmeceutical, regenerative medicine, and clinical. This review aims to discuss Col-I, covering the structure, various sources of availability, native collagen synthesis, current extraction methods, physicochemical characteristics, applications in various fields, and biomarkers. The review is intended to provide specific information on Col-I currently available, going back five years. This is expected to provide a helping hand for researchers who are concerned about any development on collagen-based products particularly for therapeutic fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.