Traffic accidents that always increase along with the increasing population growth and the number of vehicles impact the national economy. The number of traffic accidents is a count data that a Poisson distribution can approximate. The Poisson regression model often found violations of the overdispersion assumption by modeling the factors that affect the number of traffic accidents. Alternative models proposed to overcome the emergence of overdispersion in the Poisson regression model are the Generalized Poisson Regression and Negative Binomial Regression Models. Based on the analysis results, it was found that the overdispersion assumption violates the Poisson regression model, and the Generalized Poisson regression model is the best because it has the smallest AIC value of 485.50. Factors that significantly affect the number of traffic accidents in Central Java Province are the percentage of adolescents and the percentage of accidents occurring in the road area of the district/city.
Residents are all people who live in the geographical area of Indonesia for six months or more and or those who have been domiciled for less than six months but aim to settle. Population growth is caused by two components, namely: fertility and mortality. To find out how big the relationship between the population and the number of births and deaths in each sub-district of Semarang, must observed in several specific time periods and places at once. So in this study, the panel data regression method was used. In panel data regression testing, the results show that the panel data regression model formed to determine the factors that influence the level of population is the random effect model. In this model all assumptions are fulfilled. Significant factors affecting population are number of births. Births and deaths affect the population of 99.95% and the remaining 0.05% is influenced by other factors not examined Penduduk adalah semua orang yang berdomisili di wilayah geografis Indonesia selama enam bulan atau lebih dan atau mereka yang berdomisili kurang dari enam bulan tetapi bertujuan menetap. Pertumbuhan penduduk diakibatkan oleh dua komponen yaitu: fertilitas dan mortalitas. Untuk mengetahui seberapa besar keterkaitan antara jumlah penduduk dengan jumlah kelahiran dan kematian di setiap kecamataan Kota Semarang, harus diamati dalam beberapa periode waktu tertentu dan beberapa tempat secara bersamaan. Sehingga dalam penelitian ini digunakan metode regresi data panel. Dalam pengujian regresi data panel, didapatkan hasil bahwa Model regresi data panel yang terbentuk untuk mengetahui faktor-faktor yang mempengaruhi tingkat jumlah penduduk adalah model random Effect. Pada model tersebut semua asumsi terpenuhi. Faktor yang signifikan mempengaruhi jumlah penduduk adalah jumlah kelahiran. Kelahiran dan kematian mempengaruhi jumlah penduduk sebesar 99.95% dan sisanya sebesar 0.05% dipengaruhi oleh faktor- faktor lain yang tidak di teliti.
Salah satu tujuan negara adalah meningkatkan pertumbuhan ekonomi. Diperlukan pembangunan ekonomi untuk mewujudkan tujuan tersebut demi mencapai masyarakat yang sejahtera. Salah satu indikator pertumbuhan ekonomi adalah Produk Domestik Regional Bruto (PDRB). Data yang digunakan yaitu data sekunder tentang produk domestik regional bruto, jumlah penduduk miskin, pengeluaran pemerintah, rata - rata lama sekolah, tingkat partisipasi angkatan kerja, fasilitas kesehatan, tingkat pengangguran terbuka, pada tahun 2018 - 2020 di Provinsi Jawa Barat. Ternyata terdapat autokorelasi spasial dalam data tersebut, sehingga pemodelan yang tepat untuk data panel dan terdapat efek spasial dapat dilakukan menggunakan Geographically Weighted Panel Regression (GWPR). Dengan menggunakan GWPR diharapkan dapat menghasilkan hasil yang lebih menyeluruh dibandingkan dengan model GWR. Model Geographically Weighted Panel Regression yang dihasilkan yaitu model fixed effect dengan pembobot adaptive gaussian kernel dan fixed gaussian kernel. Tujuan dari penelitian ini adalah mengetahui gambaran umum data, mendapatkan model, dan memperoleh model terbaik pertumbuhan ekonomi di Jawa Barat. Hasil akhir dari penelitian ini menunjukkan bahwa model dengan pembobot Adaptive Gaussian Kernel lebih baik daripada Fixed Gaussian Kernel karena memiliki nilai AIC terkecil dan R2 terbesar. Nilai AICnya sebesar 2313,117 dan nilai R2 sebesar 0,7955945.
Economic success will provide benefits for improving people’s welfare. An important indicator to determine economic success can be seen through inflation by calculating the Consumer Price Index (CPI). CPI is a time series data that is influenced by elements between locations. The GeneralizedSpace-Time Autoregressive (GSTAR) method is a suitable method to be applied to CPI data because it involves elements of time and location (spatiotemporal). The problem is that the GSTAR model cannot detect any correlated residuals. The GSTAR model was developed into the GSTAR-SUR model to estimate parameters with correlated residuals so produce more efficient estimates. The purpose of this study was to determine the best GSTAR-SUR model to predict the CPI of six cities in Central Java, namely Cilacap, Purwokerto, Kudus, Surakarta, Semarang, and Tegal. The data that used is secondary data sourced from BPS Central Java Province. Based on the results of the analysis, the best model formed is the GSTAR-SUR (11)-I(1) model with an RMSE value of 6.213. Forecasting results show that the CPI value for the next 6 months will increase every month for each city
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.