In this present article, we study different accretion properties regarding viscous accretion of dark energy. Modified Chaplygin gas is chosen as the dark energy candidate. Viscosity is encountered with the help of Shakura–Sunyaev viscosity parameter. We study sonic speed vs radial distance curves. We compare between adiabatic and dark energy dominated cases and follow that sonic speed falls as we go nearer to the central gravitating object. As viscosity is imposed, a threshold drop in accretion sonic speed is followed. Average rate of fall in accretion sonic speed is increased with black hole’s spin. This is signifying that this kind of accretion is weakening the overall matter/energy infall. Specific angular momentum to Keplerian angular momentum ratio is found to fall as we go far from the black hole. Accretion Mach number turns high as we go towards the inner region and high wind Mach number is not allowed as we are going out. Combining, we conclude that the system weakens the feeding process of accretion.
To justify the 20-year old distant Ia Supernova observations which revealed to us that our universe is experiencing a late-time cosmic acceleration, propositions of existence of exotic fluids inside our universe are made. These fluids are assumed to occupy homogeneously the whole space of the universe and to exert negative pressure from inside such that the late-time accelerated expansion is caused. Among the different suggested models of such exotic matters/energy popularly coined as dark matter/dark energy (DE), a well-known and popular process is “introduction of redshift parametrization” of the equation of state (EoS) parameter of these fluids. We, very particularly, take the parametrization proposed by Barboza and Alcaniz (BA) along with the cosmological constant. We use 39 data points for Hubble’s parameter calculated for different redshifts and try to constrain the DE EoS parameters for BA modeling. We then constrain the DE parametrization parameters in the background of Einstein’s general relativity, loop quantum gravity and Horava–Lifshitz gravity one after another. We find the [Formula: see text], [Formula: see text] and [Formula: see text] confidence contours for all these cases and compare them with each other. We try to speculate which gravity is constraining the parameters most and which one is letting the parameters to stay within a larger domain. We tally our results of 557 points Union2 Sample and again compare them for different gravity theories.
We analyze the universe as a thermodynamic system, homogeneously filled up by exotic matters popularly named as dark energies. Different dark energy models are chosen. We start with the equation of continuity and derive the time and scale factor relations for different EoSs of different dark energy models. To do the time-scale factor relation analysis, nature of dependences on different dark energy modeling parameters have been studied. For this, the help of different plots are used. In general, different dark energies show different properties while occurrences of future singularities are considered. Those properties can be supported by the graphical analysis of their cosmic time-scale factor studies.
In this paper, we consider two different models of our present universe. We choose the models which consist of different sets of two separate fluids. The first one of each set tries to justify the late time acceleration and the second one is barotropic fluid. The former model considers our present time universe to be homogeneously filled up by Generalized Chaplygin Gas which is interacting with barotropic fluid. On the other hand, the latter model considers that the cosmic acceleration is generated by Modified Chaplygin Gas which is interacting with matter depicted by barotropic equation of state (EoS). For both the models, we consider the interaction term to vary proportionally with Hubble’s parameter as well as with the exotic matter/dark energy’s energy density. We find an explicit function form of the energy density of the cosmos which is found to depend on different cosmological parameters like scale factor, dark energy and barotropic fluid’s EoS parameters and other constants, like interacting constants, etc. We draw curves of effective EoS-s, different cosmological parameters like deceleration parameter q, statefinder parameters r and s with respect to the redshift z (for different values of dark energy and barotropic fluid parameters) and study them thoroughly. We compare two models as well as the nature of dependencies on these models’ interaction coefficients. We point out the particular redshift for which the universe may transit from a deceleration to acceleration phase. We tally all these values with different observational data. Here, we also analyze how this value of particular redshift does change for different values of interaction coefficients and different dark energy models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.