Human cystatin C (hCC), a member of the superfamily of papain‐like cysteine protease inhibitors, is the most widespread cystatin in human body fluids. This small protein, in addition to its physiological function, is involved in various diseases, including cerebral amyloid angiopathy, cerebral hemorrhage, stroke, and dementia. Physiologically active hCC is a monomer. However, all structural studies based on crystallization led to the dimeric structure formed as a result of a three‐dimensional exchange of the protein domains (3D domain swapping). The monomeric structure was obtained only for hCC variant V57N and for the protein stabilized by an additional disulfide bridge. With this study, we extend the number of models of monomeric hCC by an additional hCC variant with a single amino acid substitution in the flexible loop L1. The V57G variant was chosen for the X‐ray and NMR structural analysis due to its exceptional conformational stability in solution. In this work, we show for the first time the structural and dynamics studies of human cystatin C variant in solution. We were also able to compare these data with the crystal structure of the hCC V57G and with other cystatins. The overall cystatin fold is retained in the solute form. Additionally, structural information concerning the N terminus was obtained during our studies and presented for the first time.
Database
Crystallographic structure: structural data are available in PDB http://www.rcsb.org/pdb/search/structidSearch.do?structureId=databases under the accession number http://www.rcsb.org/pdb/search/structidSearch.do?structureId=6ROA. NMR structure: structural data are available in PDB and BMRB databases under the accession numbers http://www.rcsb.org/pdb/search/structidSearch.do?structureId=6RPV and 34399, respectively.
Titania-supported palladium, gold and bimetallic nanoparticles (second-generation nanoparticles) demonstrate promising photocatalytic properties. However, due to unusual reactivity, second-generation nanoparticles can be hazardous for living organisms. Considering the ever-growing number of new types of nanoparticles that can potentially contaminate the environment, a determination of their toxicity is extremely important. The main aim of presented study was to investigate the cytotoxic effect of surface modified TiO2-based nanoparticles, to model their quantitative nanostructure–toxicity relationships and to reveal the toxicity mechanism. In this context, toxicity tests for surface-modified TiO2-based nanoparticles were performed in vitro, using Gram-negative bacteria Escherichia coli and Chinese hamster ovary (CHO-K1) cells. The obtained cytotoxicity data were analyzed by means of computational methods (quantitative structure–activity relationships, QSAR approach). Based on a combined experimental and computational approach, predictive models were developed, and relationships between cytotoxicity, size, and specific surface area (Brunauer–Emmett–Teller surface, BET) of nanoparticles were discussed.
Human cystatin C (hCC) is a small protein belonging to the cystatin family of papain-like cysteine proteinase inhibitors. We review the recent literature concerning structural aspects of hCC related to disease. We focus on the mechanisms of hCC dimerization, oligomerization, and amyloid formation. Amyloid formation is associated with a number of neurodegenerative diseases that affect the independence and quality of life of aging populations. hCC is one of the second-wave proteins that have been found to undergo amyloidosis associated with disease. For hCC, this includes cerebral amyloid angiopathy, as well as a disorder resulting in reduced male fertility.
Studies revolving around mechanisms responsible for the development of amyloid-based diseases lay the foundations for the recognition of molecular targets of future to-be-developed treatments. However, the vast number of peptides and proteins known to be responsible for fibril formation, combined with their complexity and complexity of their interactions with various cellular components, renders this task extremely difficult and time-consuming. One of these proteins, human cystatin C (hCC), is a well-known and studied cysteine-protease inhibitor. While being a monomer in physiological conditions, under the necessary stimulus—usually a mutation, it tends to form fibrils, which later participate in the disease development. This process can potentially be regulated (in several ways) by many cellular components and it is being hypothesized that the cell membrane might play a key role in the oligomerization pathway. Studies involving cell membranes pose several difficulties; therefore, an alternative in the form of membrane mimetics is a very attractive solution. Here, we would like to present the first study on hCC oligomerization under the influence of phospholipid liposomes, acting as a membrane mimetic. The protein–mimetic interactions are studied utilizing circular dichroism, nuclear magnetic resonance, and size exclusion chromatography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.