This paper presents a new routing protocol called Secure and Energy Aware Routing Protocol (ETARP) designed for energy efficiency and security for wireless sensor networks (WSNs). ETARP attempts to deal with WSN applications operating in extreme environments such as the battlefield. The key part of the routing protocol is route selection based on utility theory. The concept of utility is a novel approach to simultaneously factor energy efficiency and trustworthiness of routes in the routing protocol. ETARP discovers and selects routes on the basis of maximum utility with incurring additional cost in overhead compared to the common AODV (Ad Hoc On Demand Distance Vector) routing protocol. Simulation results show that, in comparison to previously proposed routing protocols, namely, AODV-EHA and LTB-AODV (Light-Weight Trust-Based Routing Protocol), the proposed ETARP can keep the same security level while achieving more energy efficiency for data packet delivery.
This is the accepted version of the paper.This version of the publication may differ from the final published version. Abstract-This paper considers energy efficiency of routing protocols in wireless sensor networks. Many routing protocols for sensor network have been proposed, some of them tried to cope with the ad-hoc nature while some others focus on improving the energy efficiency. We propose an Energy Harvesting Aware Ad hoc On-Demand Distance Vector Routing Protocol (AODV-EHA) that not only inherits the advantage of existing AODV on dealing with WSN's ad hoc nature, but also make use of the energy harvesting capability of the sensor nodes in the network, which is very meaningful to the data transmission in nominated environmental and military applications. Simulations results show the energy cost of data packet delivery along the route determined by proposed routing protocol has advantages over other existing competitors. Permanent
The threshold voltage distribution after ideal programming in NAND flash memory cells is usually distorted by a combination of the random telegraph noise (RTN), cell-to-cell Interference (CCI), and the retention process. To decide the original bits more accurately in this scenario, a precise channel model shall be utilized on the basis of the measured threshold voltages. This paper aims to characterize these various distortions occurring in multi-level cell (MLC) flash memories. A mathematical description of the overall distribution for the total flash channel distortion is presented. The final threshold voltage distribution for each symbol of MLC flash is also characterized, which is important for calculating the exact soft decisions of cell bits and the application of advanced flash error correction. The results of the theoretical analysis have been validated through Monte Carlo simulations of the flash channel.
This paper proposed a method of generating two attractors in a novel grid multi-scroll chaotic system. Based on a newly generated three-dimensional system, a two-attractor grid multi-scroll attractor system can be generated by adding two triangular waves and a sign function. Some basic dynamical properties, such as equilibrium points, bifurcations, and phase diagrams, were studied. Furthermore, the system was experimentally confirmed by an electronic circuit. The circuit simulation results and numerical simulation results verified the feasibility of this method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.