An experimental study is conducted on unsteady pressure fluctuations occurring near the nozzle exit and just outside the shear layer of compressible jets. These fluctuations are related to ‘trapped waves’ within the jet's potential core, as investigated and reported recently by other researchers. Round nozzles of three different diameters and rectangular nozzles of various aspect ratios are studied. The fluctuations manifest as a series of peaks in the spectra of the fluctuating pressure. Usually the first peak at the lowest frequency (fundamental) has the highest amplitude and the amplitude decreases progressively for successive peaks at higher frequencies. These ‘trapped wave spectral peaks’ are found to occur with all jets at high subsonic conditions and persist into the supersonic regime. Their characteristics and variations with axial and radial distances, jet Mach number and aspect ratio of the nozzle are documented. For round nozzles, the frequency of the fundamental is found to be independent of the jet's exit boundary layer characteristics and scales with the nozzle diameter. On a Strouhal number (based on diameter) versus jet Mach number plot it is represented by a unique curve. Relative to the fundamental the frequencies of the successive peaks are found to bear the ratios of 5/3, 7/3, 9/3 and so on, at a given Mach number. For rectangular nozzles, the number of peaks observed on the major axis is found to be greater than that observed on the minor axis by a factor approximately equal to the nozzle's aspect ratio; the fundamental is the same on either edge. For all nozzles the onset of screech tones appears as a continuation of the evolution of these peaks; it is as if one of these peaks abruptly increases in amplitude and turns into a screech tone as the jet Mach number is increased.
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientifi c and Technical Information (STI) Program plays a key part in helping NASA maintain this important role. The NASA STI Program operates under the auspices of the Agency Chief Information Offi cer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI Program provides access to the NASA Technical Report Server-Registered (NTRS Reg) and NASA Technical Report Server-Public (NTRS) thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types: • TECHNICAL PUBLICATION. Reports of completed research or a major signifi cant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of signifi cant scientifi c and technical data and information deemed to be of continuing reference value. NASA counter-part of peer-reviewed formal professional papers, but has less stringent limitations on manuscript length and extent of graphic presentations.
Indentation tests were performed to assess the influence of compositional changes on the mechanical properties of several half-Heusler compounds with the general composition Zr0.5Hf0.5Co1-xIrxSb0.99Sn0.01 (x=0.0,0.1,0.3,0.5,0.7). These samples were synthesized by high temperature solid-state reactions and were consolidated by hot-pressing. Indentation measurements were obtained using both microhardness testing (Vickers) and depth-sensing nanoindentation. These measurements were used to determine the microhardness and the elastic modulus of each half-Heusler compound. The Vickers hardness values were found to range between 876 and 964. A slight increase in hardness was observed with the addition of iridium. The elastic stiffness values ranged from 229 GPa to 246 GPa. Here, a slight decrease in stiffness was observed with the addition of iridium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.