Abstract. This study describes the development and use of a specific method for disassembling intermediate filament (IF) networks in living cells. It takes advantage of the disruptive effects of mimetic peptides derived from the amino acid sequence of the helix initiation 1A domain of IF protein chains. The results demonstrate that at 1:1 molar ratios, these peptides disassemble vimentin IF into small oligomeric complexes and monomers within 30 min at room temperature in vitro. Upon microinjection into cultured fibroblasts, these same peptides induce the rapid disassembly of IF networks. The disassembly process is accompanied by a dramatic alteration in cell shape and the destabilization of microtubule and actin-stress fiber networks. These changes in cell shape and IF assembly states are reversible. The results are discussed with respect to the roles of IF in cell shape and the maintenance of the integrity and mechanical properties of the cytoplasm, as well as the stability of the other major cytoskeletal systems.
Many neurodegenerative diseases are caused by gain-of-function mechanisms in which the disease-causing protein is altered, becomes toxic to the cell, and aggregates. Among these 'proteinopathies' are Alzheimer's and Parkinson's disease, prion disorders and polyglutamine diseases. Members of this latter group, also known as triplet repeat diseases, are caused by the expansion of unstable CAG repeats coding for glutamine within the respective proteins. Spinocerebellar ataxia type 1 (SCA1) is one such disease, characterized by loss of motor coordination due to the degeneration of cerebellar Purkinje cells and brain stem neurons. In SCA1 and several other polyglutamine diseases, the expanded protein aggregates into nuclear inclusions (NIs). Because these NIs accumulate molecular chaperones, ubiquitin and proteasomal subunits--all components of the cellular protein re-folding and degradation machinery--we hypothesized that protein misfolding and impaired protein clearance might underlie the pathogenesis of polyglutamine diseases. Over-expressing specific chaperones reduces protein aggregation in transfected cells and suppresses neurodegeneration in invertebrate animal models of polyglutamine disorders. To determine whether enhancing chaperone activity could mitigate the phenotype in a mammalian model, we crossbred SCA1 mice with mice over-expressing a molecular chaperone (inducible HSP70 or iHSP70). We found that high levels of HSP70 did indeed afford protection against neurodegeneration.
Neuronal atrophy in neurodegenerative diseases is commonly viewed as an early event in a continuum that ultimately results in neuronal loss. In a mouse model of the polyglutamine disorder spinocerebellar ataxia type 1 (SCA1), we tested the hypothesis that cerebellar Purkinje neuron atrophy serves an adaptive role rather than being simply a nonspecific response to injury. In acute cerebellar slices from SCA1 mice, we find that Purkinje neuron pacemaker firing is initially normal but, with the onset of motor dysfunction, becomes disrupted, accompanied by abnormal depolarization. Remarkably, subsequent Purkinje cell atrophy is associated with a restoration of pacemaker firing. The early inability of Purkinje neurons to support repetitive spiking is due to unopposed calcium currents resulting from a reduction in large-conductance calcium-activated potassium (BK) and subthreshold-activated potassium channels. The subsequent restoration of SCA1 Purkinje neuron firing correlates with the recovery of the density of these potassium channels that accompanies cell atrophy. Supporting a critical role for BK channels, viral-mediated increases in BK channel expression in SCA1 Purkinje neurons improves motor dysfunction and partially restores Purkinje neuron morphology. Cerebellar perfusion of flufenamic acid, an agent that restores the depolarized membrane potential of SCA1 Purkinje neurons by activating potassium channels, prevents Purkinje neuron dendritic atrophy. These results suggest that Purkinje neuron dendritic remodeling in ataxia is an adaptive response to increases in intrinsic membrane excitability. Similar adaptive remodeling could apply to other vulnerable neuronal populations in neurodegenerative disease.
Giant axonal neuropathy (GAN) is an early-onset neurological disorder caused by mutations in the GAN
Spinocerebellar Ataxia Type 1 (SCA1) is an incurable, dominantly inherited neurodegenerative disease of the cerebellum caused by a polyglutamine-repeat expansion in the protein ATXN1. While analysis of human autopsy material indicates significant glial pathology in SCA1, previous research has focused on characterizing neuronal dysfunction. In this study, we characterized astrocytic and microglial response in SCA1 using a comprehensive array of mouse models. We have discovered that astrocytes and microglia are activated very early in SCA1 pathogenesis even when mutant ATXN1 expression was limited to Purkinje neurons. Glial activation occurred in the absence of neuronal death, suggesting that glial activation results from signals emanating from dysfunctional neurons. Finally, in all different models examined glial activation closely correlated with disease progression, supporting the development of glial-based biomarkers to follow disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.