Temporal acuity for brief gaps in noise was studied in mice of different ages (1-36 months) from strains with differing susceptibility to age-related hearing loss, using reflex modification audiometry. Prepulse inhibition of the acoustic startle reflex (ASR) increased with gap depth (GD: 10-40 dB in 70 dB SPL noise) and lead time (LT: 1-15 ms). The increase in inhibition with LT followed an exponential function in which the two parameters, asymptotic inhibition (AINH) and the time constant (tau), were both affected by GD. AINH rapidly declined from 1 to 6 and then to 18 months of age in C57BL/6J mice with progressively severe hearing loss, but first increased with maturation and then gradually declined beyond 6-12 months of age in CBA/CaJ and CBA x C57BL Fl-hybrid mice, which show no apparent change in sensory function at these ages. In contrast, tau was unaffected by hearing loss or by age, this suggesting that age-related changes in this form of temporal acuity occur because of a reduction in the efficiency with which gaps are centrally processed, not from any reduced ability to follow their rapid shift in noise level.
This is the first report of prospective VIM targeting with tractography for FUS-T. These results suggest that tractography-guided targeting is safe and has satisfactory short-term clinical outcomes.
The study objective was to evaluate the safety and efficacy of deep brain stimulation (DBS) at the ventral capsule/ventral striatum (VC/VS) region to specifically modulate frontal lobe behavioral and cognitive networks as a novel treatment approach for Alzheimer's disease (AD) patients. This is a non-randomized phase I prospective open label interventional trial of three subjects with matched comparison groups. AD participants given DBS for at least 18 months at the VC/VS target were compared on the Clinical Dementia Rating-Sum of Boxes (CDR-SB), our primary outcome clinical measure, to matched groups without DBS from the AD Neuroimaging Initiative (ADNI) cohort. Serial 2-Deoxy-2-[18F]fluoro-D-glucose (FDG) positron emission tomography (PET) images of AD participants were also compared longitudinally over time. Three AD DBS participants were matched to subjects from the ADNI cohort. All participants tolerated DBS well without significant adverse events. All three AD DBS participants had less performance decline and two of them meaningfully less decline over time on our primary outcome measure, CDR-SB, relative to matched comparison groups from the ADNI using score trajectory slopes. Minimal changes or increased metabolism on FDG-PET were seen in frontal cortical regions after chronic DBS at the VC/VS target. The first use of DBS in AD at a frontal lobe behavior regulation target (VC/VS) was well-tolerated and revealed less performance decline in CDR-SB. Frontal network modulation to improve executive and behavioral deficits should be furthered studied in AD.
Abstract. Limited data compares clinical profiles of Lewy Body Dementia (LBD) with Alzheimer's disease (AD) andParkinson's disease (PD). Twenty-one mildly demented ambulatory LBD subjects were individually matched by MMSE score with 21 AD subjects and by UPDRS motor score with 21 PD subjects. Matched by age, gender, education, and race, pairs were compared using cognitive, functional, behavioral, and motor measures. LBD group performed worse than PD on axial motor, gait, and balance measures. AD had more amnesia and orientation impairments, but less executive and visuospatial deficits than LBD subjects. LBD group had more sleepiness, cognitive/behavioral fluctuations, hallucinations, and sleep apnea than AD or PD. Axial motor, gait, and balance disturbances correlated with executive, visuospatial, and global cognition deficits. LBD is differentiated from AD and PD by retrieval memory, visuospatial, and executive deficits; axial motor, gait and balance impairments; sleepiness, cognitive/behavioral fluctuations, hallucinations, and sleep apnea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.