Objectives The aim of this study was to assess hepatic copper concentrations and zonal distribution in cat liver specimens. Methods For this study, 121 archived, formalin-fixed, paraffin-embedded liver specimens from cats were used. Tissue sections were stained for copper with rhodanine and scored from 0 (no copper accumulation) to 5 (panlobular copper accumulation). The tissue specimens were then deparaffinized and hepatic copper concentrations were measured using flame atomic absorption spectroscopy. Results Tissue samples were categorized into four groups based on histopathologic findings: (1) no significant histopathologic hepatic changes (n = 66); (2) hepatic steatosis (n = 18); (3) inflammatory or infectious disease (n = 24); and (4) neoplasia (n = 13). Of the 121 specimens, 13 (11%) stained positive for copper, with three having a score ⩾3. Thirty-seven specimens (31%) had copper concentrations above the reference interval ([RI] <180 µg/g dry weight liver). Copper concentrations in cats with hepatic inflammatory or infectious disease were significantly higher than cats with hepatic steatosis ( P = 0.03). Copper-staining score and concentration were positively correlated ( rs = 0.46, P <0.001). Conclusions and relevance Despite the fact that 31% of specimens had copper concentrations above the RI, only 11% showed positive copper staining and only 2.5% had a score ⩾3. Our findings suggest that hepatic copper concentrations greater than the upper limit of the RI are relatively common in cats. Further studies to determine the factors that influence hepatic copper staining in cats and to establish contemporary RIs for hepatic copper in healthy cats are warranted.
The intracellular distribution of copper in the liver has been investigated in dogs and humans. However, this has not been reported in cats. This study aimed to assess the intracellular copper distribution in liver specimens from cats with a range of hepatic copper concentrations. Twenty-nine frozen liver specimens from cats were included. Each liver specimen was divided into two pieces for overall copper quantification and tissue fractionation. The copper concentrations in liver specimens and liver fractions were measured by flame atomic absorption spectroscopy. Five specimens had copper concentrations < 100 μg/g dry weight, eight had copper concentrations between 100 and 180 μg/g, 14 had copper concentrations between 181 and 700 μg/g, and two had copper concentrations >700 μg/g. Only one specimen had positive copper staining. Regardless of the overall concentrations, copper was mostly found in the cytosolic fraction followed by the nuclear, large granule, and microsomal fractions. Our findings indicate that similarly to other species, intracellular copper is predominantly found in the cytosolic and nuclear fractions in cats. The distribution in cats with copper-loaded conditions, such as primary copper hepatopathy, was not assessed but warrants evaluation.
Objectives The aim of this study was to assess laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) as a tool for measuring concentrations and determining accumulation of copper in frozen liver specimens from cats. Methods Six frozen liver specimens were evaluated by qualitative copper staining and quantitative flame atomic absorption spectroscopy. Tissue specimens were cryo-sectioned and quantitative bioimaging of copper was performed using LA-ICP-MS. Results were compared with those obtained using conventional methods. Results Of the six specimens, only one showed positive staining for copper with rhodanine. Using flame atomic absorption spectroscopy (FAAS), one specimen showed a deficient copper level (<100 µg/g dry weight), two specimens had copper within the reference interval (RI; 150–180 µg/g) and three specimens had copper concentrations above the RI. Bioimaging from LA-ICP-MS showed inhomogeneous distribution of hepatic copper. The areas with dense copper accumulation were represented as hotspots in the liver specimens. Hepatic copper quantification by LA-ICP-MS correlated well with copper quantified by FAAS ( r = 0.96, P = 0.002). Conclusions and relevance Our findings suggest that quantitative bioimaging by LA-ICP-MS could be used to demonstrate the distribution and concentration of copper in frozen liver specimens from cats. The distribution of copper in these specimens was inhomogeneous with dense accumulation represented as hotspots on tissue sections. A positive correlation of hepatic copper concentrations determined by LA-ICP-MS and FAAS was found. Further studies to establish an RI for hepatic copper using this technique and to further determine its clinical utility are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.