Transition metal dichalcogenides (TMDs) are a group of layered 2D semiconductors that have shown many intriguing electrical and optical properties. However, the thermal transport properties in TMDs are not well understood due to the challenges in characterizing anisotropic thermal conductivity. Here, a variable-spot-size time-domain thermoreflectance approach is developed to simultaneously measure both the in-plane and the through-plane thermal conductivity of four kinds of layered TMDs (MoS , WS , MoSe , and WSe ) over a wide temperature range, 80-300 K. Interestingly, it is found that both the through-plane thermal conductivity and the Al/TMD interface conductance depend on the modulation frequency of the pump beam for all these four compounds. The frequency-dependent thermal properties are attributed to the nonequilibrium thermal resistance between the different groups of phonons in the substrate. A two-channel thermal model is used to analyze the nonequilibrium phonon transport and to derive the intrinsic thermal conductivity at the thermal equilibrium limit. The measurements of the thermal conductivities of bulk TMDs serve as an important benchmark for understanding the thermal conductivity of single- and few-layer TMDs.
Measuring thermal properties of materials is not only of fundamental importance in understanding the transport processes of energy carriers (electrons and phonons in solids) but also of practical interest in developing novel materials with desired thermal properties for applications in energy conversion and storage, electronics, and photonic systems. Over the past two decades, ultrafast laser-based time-domain thermoreflectance (TDTR) has emerged and evolved as a reliable, powerful, and versatile technique to measure the thermal properties of a wide range of bulk and thin film materials and their interfaces. This tutorial discusses the basics as well as the recent advances of the TDTR technique and its applications in the thermal characterization of a variety of materials. The tutorial begins with the fundamentals of the TDTR technique, serving as a guideline for understanding the basic principles of this technique. Several variations of the TDTR technique that function similarly as the standard TDTR but with their own unique features are introduced, followed by introducing different advanced TDTR configurations that were developed to meet different measurement conditions. This tutorial closes with a summary that discusses the current limitations and proposes some directions for future development.
Hexagonal boron nitride (h-BN) has received great interest in recent years as a wide bandgap analog of graphene-derived systems, along with its potential in a wide range of applications, for example, as the dielectric layer for graphene devices. However, the thermal transport properties of h-BN, which can be critical for device reliability and functionality, are little studied both experimentally and theoretically. The primary challenge in the experimental measurements of the anisotropic thermal conductivity of h-BN is that typically sample size of h-BN single crystals is too small for conventional measurement techniques, as state-of-the-art technologies synthesize h-BN single crystals with lateral sizes only up to 2.5 mm and thickness up to 200 μm. Recently developed time-domain thermoreflectance (TDTR) techniques are suitable to measure the anisotropic thermal conductivity of such small samples, as it only requires a small area of 50x50μm 2 for the measurements. Accurate atomistic modeling of thermal transport in bulk h-BN are also challenging due to the highly anisotropic layered structure. Here we conduct an integrated experimental and theoretical study on the anisotropic thermal conductivity of bulk h-BN single crystals over the temperature range of 100 K to 500 K, using TDTR measurements with multiple
It is challenging to characterize thermal conductivity of materials with strong anisotropy. In this work, we extend the time-domain thermoreflectance (TDTR) method with a variable spot size approach to simultaneously measure the in-plane (Kr) and the through-plane (Kz) thermal conductivity of materials with strong anisotropy. We first determine Kz from the measurement using a larger spot size, when the heat flow is mainly one-dimensional along the through-plane direction, and the measured signals are only sensitive to Kz. We then extract the in-plane thermal conductivity Kr from a second measurement using the same modulation frequency but with a smaller spot size, when the heat flow becomes three-dimensional, and the signal is sensitive to both Kr and Kz. By choosing the same modulation frequency for the two sets of measurements, we can avoid potential artifacts introduced by the frequency-dependent Kz, which we have found to be non-negligible, especially for some two-dimensional layered materials like MoS2. After careful evaluation of the sensitivity of a series of hypothetical samples, we provided guidelines on choosing the most appropriate laser spot size and modulation frequency that yield the smallest uncertainty, and established a criterion for the range of thermal conductivity that can be measured reliably using our proposed variable spot size TDTR approach. We have demonstrated this variable spot size TDTR approach on samples with a wide range of in-plane thermal conductivity, including fused silica, rutile titania (TiO2 [001]), zinc oxide (ZnO [0001]), molybdenum disulfide (MoS2), hexagonal boron nitride (h-BN), and highly ordered pyrolytic graphite.
Silicon carbide (SiC) is a wide bandgap (WBG) semiconductor with promising applications in high-power and high-frequency electronics. Among its many useful properties, the high thermal conductivity is crucial. In this letter, the anisotropic thermal conductivity of three SiC samples, n-and SI 6H-SiC (V-doped 1×10 17 cm -3 ), is measured using femtosecond laser based time-domain thermoreflectance (TDTR) over a temperature range from 250 K to 450 K. We simultaneously measure the thermal conductivity parallel to ( ) and across the hexagonal plane ( ) for SiC by choosing the appropriate laser spot radius and the modulation frequency for the TDTR measurements. For both and , the following decreasing order of thermal conductivity value is observed: SI 4H-SiC > n-type 4H-SiC > SI 6H-SiC. This work serves as an important benchmark for understanding thermal transport in WBG semiconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.