A smart wearable textile array system (SWTAS) with direction of arrival (DoA) estimation and beamforming is proposed and developed for biomedical telemetry applications. This conformal system enables effective and continuous patient monitoring when combined with one or more health sensors, as information about the subject's health condition is received adaptively to guarantee link reliability. This operation is facilitated by a receiver front-end and a digital baseband beamforming network, which enables scalability and flexibility. The proposed SWTAS also features flexible antenna arrays made using textiles, which are arbitrarily located on a cylindrically shaped body phantom to ensure wide spatial DoA estimation capability. Besides being designed to suit on-body placement, the system performance is also characterized for on-body usage using a commercial body-emulating liquid, and placed at a realistic distance from the body, considering user clothing. Investigation indicated a good performance in the system's 80 forward plane with a DoA accuracy of 3 . Finally, a practical evaluation is presented using two transmitters placed at distinct locations and distances. The system successfully estimated both DoAs and received the telemetry signals using beamforming.Index Terms-Antenna arrays, biomedical communication, biomedical monitoring, biomedical telemetry, conformal antennas, direction of arrival (DoA) estimation, smart antennas.
Abstract-A design procedure for microstrip antenna topologies operating within the full UWB band is described. The presence of the full ground plane successfully results in a unidirectional antenna, which is important in applications related to Wireless Body Area Networks (WBAN). The existing broadbanding concepts have been creatively combined throughout the design to enable the UWB behavior, while simultaneously keeping the full ground plane intact. The procedure is validated with a concrete design of a microstrip type UWB antenna operating from 3.6 GHz to 10.3 GHz.
The paper presents the design and investigation of a flexible all-textile antenna operating in the wireless body area network (WBAN) ultrawideband (UWB) specified by the IEEE 802.15.6 standard. The proposed antenna features an innovative and compact UWB radiator on top of the overall structure with a full ground plane on its reverse side. The radiator, which is based on a microstrip patch combined with multiple miniaturization and broadbanding methods, resulted in a simple topology and a compact size of 39 mm×42 mm×3.34 mm (0.51×0.55×0.043λ). In comparison to the literature, the proposed structure is considered to be the most compact microstrip-based textile UWB antenna to date featuring a full ground plane. The choice of the commercial textiles is also made based on cost efficiency, ease of accessibility, and ease of fabrication using simple tools. Meanwhile, the full ground plane enables the antenna operation in the vicinity of the human body with minimal body coupling and radiation towards it, ensuring operational safety. Besides its operation in the mandatory channels of the WBAN-UWB low and high bands, the proposed antenna also operates and preserves its performance in five other optional channels of the high band when placed on the body and under bend conditions of 30° and 60°. The proposed antenna successfully achieved the specific absorption rate below the regulated limit specified by the Federal Communications Commission.
A design overview for a microstrip antenna topology operating within the full UWB band is described. Existing broadbanding concepts have been creatively combined throughout this design to enable the UWB behavior, while simultaneously keeping the full ground plane intact. This is crucial in maintaining worn antenna performance. It successfully reduces any on-body performance degradation, resulting in a very robust structure. A detailed numerical and experimental evaluation of the antenna is performed in free space and on body.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.