Oxidative stress is an exclusive biochemical complication affecting reproduction; hence, dietary antioxidant supplementation for its attenuation is a required nutrition – reproduction improvement strategy. On this background, Chlorella vulgaris (a natural antioxidant) was supplemented to grower female rabbits to maturity. The rabbits were thirty-five in number randomly distributed into five experimental groups in a completely randomized design. Control group was fed only basal feed while treatment groups were fed diets containing 40 %, 60 %, 80 % and 100 % Chlorella vulgaris biomass as T1, T2, T3 and T4 respectively at 500 mg per animal body weight (kg) along with the basal feed daily. Performance records were obtained, blood was collected, and at the end uterus, ovaries and liver were removed from sacrificed animals for analysis. Serum, uterus and liver oxidative stress status were determined while RNA isolated from liver and ovaries samples were used for antioxidant genes expression analysis. Oxidative stress status and antioxidant enzymes activities were determined using chemical assays while antioxidant gene expression levels were determined using real-time quantitative PCR system. There was significant difference in feed intake (p < 0.014), final body weights (p < 0.008), empty carcass weights (p < 0.001) and commercial carcass weights (p < 0.001) of the rabbits as results of the microalgae supplementation. There was also significant difference in malondialdehyde (MDA) concentrations (p < 0.050), total antioxidant capacity (TAC) (p < 0.050) and protein carbonyl (PCO) concentrations (p < 0.050) due to the supplementation of the microalgae; in addition, supplementation of the microalgae significantly improved activities of superoxide dismutase (SOD) (p < 0.050), catalase (CAT) (p < 0.050) and reduced glutathione (GSH) concentration (p < 0.050). Furthermore, there was significant difference in relative expression of primary antioxidant genes sod1 (p < 0.050) and gpx1 (p < 0.050); however, there was no significant difference in relative expression of bre (p > 0.050) and ucp1 (p > 0.050). The study concluded from the outcomes stated above that supplementation of microalgae Chlorella vulgaris improved performances of rabbits through attenuation of oxidative stress, enhancement of antioxidant enzymes activities as well as up-regulation of primary antioxidant genes. Hence, it was recommended as dietary supplement for protection against oxidative stress and improved productivity in rabbits and other food producing mammalian species. In addition, further studies into assessment of its effects on expression of transcripts and immune modulation genes in rabbits and other animals is warranted as future studies in order to established its potential as beneficial nutraceutical for animals and human.
Although, it is known that spermatozoa harbor a variety of RNAs that may influence embryonic development, little is understood about sperm transcriptomic differences in relation to fertility, especially in buffaloes. In the present study, we compared the differences in sperm functional attributes and transcriptomic profile between high- and low-fertile buffalo bulls. Sperm membrane and acrosomal integrity were lower (P < 0.05), while protamine deficiency and lipid peroxidation were higher (P < 0.05) in low- compared to high-fertile bulls. Transcriptomic analysis using mRNA microarray technology detected a total of 51,282 transcripts in buffalo spermatozoa, of which 4,050 transcripts were differentially expressed, and 709 transcripts were found to be significantly dysregulated (P < 0.05 and fold change >1) between high- and low-fertile bulls. Majority of the dysregulated transcripts were related to binding activity, transcription, translation, and metabolic processes with primary localization in the cell nucleus, nucleoplasm, and in cytosol. Pathways related to MAPK signaling, ribosome pathway, and oxidative phosphorylation were dysregulated in low-fertile bull spermatozoa. Using bioinformatics analysis, we observed that several genes related to sperm functional attributes were significantly downregulated in low-fertile bull spermatozoa. Validation of the results of microarray analysis was carried out using real-time qPCR expression analysis of selected genes (YBX1, ORAI3, and TFAP2C). The relative expression of these genes followed the same trend in both the techniques. Collectively, this is the first study to report the transcriptomic profile of buffalo spermatozoa and to demonstrate the dysregulation of functionally relevant transcripts in low-fertile bull spermatozoa. The results of the present study open up new avenues for understanding the etiology for poor fertility in buffalo bulls and to identify fertility biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.