Indonesia is a rich country in herbal plants that can be used as traditional medicine. Leaves are one of the main components of herbal plants that are difficult to distinguish in texture and shape. This study aims to classify two types of herbal leaves, namely Sauropus androgynus and Moringa leaves using the K-nearest neighbor (KNN) and Support vector machine (SVM) with fourier descriptor (FD) feature extraction on texture and shape features. The research uses primary data collected through a smartphone camera as much as 480 image data with light and dark scenarios which are then divided into 80:20 training and testing data. Based on the research that has been done, it is found that the KNN for light scenario data and dark scenarios get 92% and 94% accuracy respectively. The test results using SVM with FD feature extraction obtain an accuracy of 96% for light and dark scenarios. Thus, SVM is more recommended in the classification of herbal leaf images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.