Background The identification of endogenous signals that lead to microglial activation is a key step in understanding neuroinflammatory cascades. As ATP release accompanies mechanical strain to neural tissue, and as the P2X7 receptor for ATP is expressed on microglial cells, we examined the morphological and molecular consequences of P2X7 receptor stimulation in vivo and in vitro and investigated the contribution of the P2X7 receptor in a model of increased intraocular pressure (IOP). Methods In vivo experiments involved intravitreal injections and both transient and sustained elevation of IOP. In vitro experiments were performed on isolated mouse retinal and brain microglial cells. Morphological changes were quantified in vivo using Sholl analysis. Expression of mRNA for M1- and M2-like genes was determined with qPCR. The luciferin/luciferase assay quantified retinal ATP release while fura-2 indicated cytoplasmic calcium. Microglial migration was monitored with a Boyden chamber. Results Sholl analysis of Iba1-stained cells showed retraction of microglial ramifications 1 day after injection of P2X7 receptor agonist BzATP into mouse retinae. Mean branch length of ramifications also decreased, while cell body size and expression of Nos2, Tnfa, Arg1, and Chil3 mRNA increased. BzATP induced similar morphological changes in ex vivo tissue isolated from Cx3CR1+/GFP mice, suggesting recruitment of external cells was unnecessary. Immunohistochemistry suggested primary microglial cultures expressed the P2X7 receptor, while functional expression was demonstrated with Ca2+ elevation by BzATP and block by specific antagonist A839977. BzATP induced process retraction and cell body enlargement within minutes in isolated microglial cells and increased Nos2 and Arg1. While ATP increased microglial migration, this required the P2Y12 receptor and not P2X7 receptor. Transient elevation of IOP led to microglial process retraction, cell body enlargement, and gene upregulation paralleling changes observed with BzATP injection, in addition to retinal ATP release. Pressure-dependent changes were reduced in P2X7−/− mice. Death of retinal ganglion cells accompanied increased IOP in C57Bl/6J, but not P2X7−/− mice, and neuronal loss showed some association with microglial activation. Conclusions P2X7 receptor stimulation induced rapid morphological activation of microglial cells, including process retraction and cell body enlargement, and upregulation of markers linked to both M1- and M2-type activation. Parallel responses accompanied IOP elevation, suggesting ATP release and P2X7 receptor stimulation influence the early microglial response to increased pressure.
Objectives To evaluate nasal soft and hard tissue changes immediately post–rapid maxillary expansion (RME) and to assess the stability of these changes using cone beam computed tomography (CBCT). Materials and Methods A total of 35 treatment group (TG) patients (18 girls, 17 boys; 9.39 ± 1.4) had a pre-RME CBCT and a post-RME CBCT approximately 66 days after expansion, and 25 patients had a follow-up CBCT 2.84 years later. A total of 28 control group (CG; no RME) patients (16 girls, 12 boys; 8.81 ± 1.6) had an initial CBCT and a CBCT an average of 2.25 years later. Soft and hard tissue nasal landmarks were measured in transverse, sagittal, and coronal planes of space on CBCT scans. Differences within the same group were evaluated by paired t-tests or Wilcoxon signed-rank tests. Long-term comparisons between TG and CG were evaluated by independent-sample t-tests or Wilcoxon rank-sum tests. Results Immediately post-RME, there were statistically significant mean increases of 1.6 mm of alar base width, 1.77 mm of pyriform height, and 3.57 mm of pyriform width (P < .05). CG showed the significant increases over 2.25 years (P < .001). Compared with CG, the long-term evaluation of TG demonstrated only pyriform height and pyriform width showed a statistically significant difference (P < .01). Conclusions Although RME produced some significant increase on the nasal soft tissue immediately after expansion, it regressed to the mean of normal growth and development over time. However, long-term evaluation of TG compared with CG showed only pyriform height and pyriform width to be affected by RME.
Background: The endogenous signals leading to microglial activation represent central components of neuroinflammatory cascades. Given ATP release accompanies mechanical strain to neural tissue, and the P2X7R for ATP is expressed on microglial cells, we examined the morphological and molecular consequences of P2X7R stimulation in vivo and in vitro in detail to enhance understanding of the response. Methods: IL-1β release was determined with ELISA. Expression of mRNA used qPCR. ATP release was determined with the luciferin/luciferase assay while fura-2 indicated cytoplasmic calcium. Microglial migration used Boyden chambers. Morphological changes were quantified from Iba1-immunostained cells. Results: Sholl analysis of Iba1-stained cells showed retraction of microglial ramifications one day after injection of P2X7R agonist BzATP into mouse retinae. Mean branch length also decreased, while cell body size and expression of Nos2, Tnfa, Arg1, Chil3 increased. BzATP induced similar morphological changes in ex vivo tissue isolated from Cx3CR1-GFP mice, suggesting cell recruitment was unnecessary. Primary microglial cultures were developed to investigate the autonomous nature of the response. Isolated microglial cells expressed P2X7R, while increased intracellular Ca 2+ triggered by BzATP and blocked by antagonist A839977 confirmed functional expression. BzATP induced process retraction and cell body enlargement within minutes in isolated microglial cells, and increased expression of Nos2 and Arg1 . BzATP both increased expression of IL-1β, and triggered a substantial release, suggesting P2X7R both primes and activates the NLRP3 inflammasome. ATP increased microglial migration, but this required P2Y12R, not P2X7R involvement. As ATP release often accompanies mechanical strain, responses to intraocular pressure elevation were determined. Transient elevation increased ATP release and led to microglial process retraction, cell body enlargement and gene upregulation resembling the responses to BzATP injection. These pressure-dependent changes to microglia were reduced in P2X7R -/- mice. Critically, the loss of retinal ganglion cell neurons accompanying increased pressure was correlated with microglial activation in C57Bl/6J, but not P2X7R -/- mice.Conclusions: P2X7R stimulation induced morphological and molecular markers of activation in retinal microglial cells in vivo and in vitro , affecting IL-1β release and rapid process retraction but not cell migration. Parallel responses accompanied transient pressure elevation, suggesting ATP release and P2X7R stimulation contribute to the microglial response to rising pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.