Phenolic compounds contain classes of flavonoids and non-flavonoids, which occur naturally as secondary metabolites in plants. These compounds, when consumed in food substances, improve human health because of their antioxidant properties against oxidative damage diseases. In this study, an electrochemical sensor was developed using a carbon paste electrode (CPE) modified with Fe3O4 nanoparticles (MCPE) for the electrosensitive determination of sinapic acid, syringic acid, and rutin. The characterization techniques adapted for CPE, MCPE electrodes, and the solution interface were cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Scan rate and pH were the parameters subjected to optimization studies for the determination of phenolic compounds. The incorporation of Fe3O4 nanoparticles to the CPE as a sensor showed excellent sensitivity, selectivity, repeatability, reproducibility, stability, and low preparation cost. The limits of detection (LOD) obtained were 2.2 × 10−7 M for sinapic acid, 2.6 × 10−7 M for syringic acid, and 0.8 × 10−7 M for rutin, respectively. The fabricated electrochemical sensor was applied to determine phenolic compounds in real samples of red and white wine.
Purpose: Parkinson's disease (PD), which is the second most common neurodegenerative disease following Alzheimer’s disease, can be diagnosed clinically when about 70% of the dopaminergic neurons are lost and symptoms are noticed. Neuroimaging methods such as single photon emission computed tomography have become useful tools in vivo to assess dopamine transporters (DATs) in the striatal region. However, inter- and intra-reader variability of construing the images might result in misdiagnosis. To overcome the challenges posed by classification of the disease, image preparation techniques and a back propagation neural network (BPNN) have been proposed. The aim of this study is to show that the proposed method can be used for the classification of PD with high accuracy. Methods: In this study, we used basic image preparation techniques and a back propagation neural network on DAT imaging datasets from the Parkinson’s Progression Markers Initiative. 1334 PD and 212 normal control (NC) subjects were included. In the image preparation phase, adaptive histogram equalization was applied to the cropped images, followed by image binarization. Then, the mass-difference method was applied to separate the regions of interest with similar values. Finally, the binarized images were subtracted from the original images, and the average pixel per node approach was applied to the images to minimize the inputs. In the BPNN phase, 400 input neurons and 2 output neurons were used. The dataset was divided into three sets: training, validation, and test. The BPNN was trained several times in order to obtain the optimum values. Results: The use of 40 hidden neurons, a learning rate of 0.00079, and a momentum factor of 0.90 produced superior results and were applied in the final BPNN architecture. The tolerance value used was 0.80. Uniquely, we found the sensitivity, specificity, and accuracy for PD vs. NC classification to be 99.7%, 99.2%, 99.6%, respectively. To the best of our knowledge, this is the highest accuracy value achieved in the existing literature. Our method increases computational speed together with improved performance. Conclusion: We have shown that effective image processing methods and the use of BPNN can successfully be applied to PD datasets to accurately determine any abnormalities in DAT. Using the shallow neural network, this procedure requires less processing time compared to other methods, and its accuracy, sensitivity, and specificity are reliable. However, further studies are needed to establish a prediction method for the preclinical and prodromal stages of the disease.
The technological improvement in the field of physics, chemistry, electronics, nanotechnology, biology, and molecular biology has contributed to the development of various electrochemical biosensors with a broad range of applications in healthcare settings, food control and monitoring, and environmental monitoring. In the past, conventional biosensors that have employed bioreceptors, such as enzymes, antibodies, Nucleic Acid (NA), etc., and used different transduction methods such as optical, thermal, electrochemical, electrical and magnetic detection, have been developed. Yet, with all the progresses made so far, these biosensors are clouded with many challenges, such as interference with undesirable compound, low sensitivity, specificity, selectivity, and longer processing time. In order to address these challenges, there is high need for developing novel, fast, highly sensitive biosensors with high accuracy and specificity. Scientists explore these gaps by incorporating nanoparticles (NPs) and nanocomposites (NCs) to enhance the desired properties. Graphene nanostructures have emerged as one of the ideal materials for biosensing technology due to their excellent dispersity, ease of functionalization, physiochemical properties, optical properties, good electrical conductivity, etc. The Integration of the Internet of Medical Things (IoMT) in the development of biosensors has the potential to improve diagnosis and treatment of diseases through early diagnosis and on time monitoring. The outcome of this comprehensive review will be useful to understand the significant role of graphene-based electrochemical biosensor integrated with Artificial Intelligence AI and IoMT for clinical diagnostics. The review is further extended to cover open research issues and future aspects of biosensing technology for diagnosis and management of clinical diseases and performance evaluation based on Linear Range (LR) and Limit of Detection (LOD) within the ranges of Micromolar µM (10−6), Nanomolar nM (10–9), Picomolar pM (10–12), femtomolar fM (10–15), and attomolar aM (10–18).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.