Abstract. This work presents airborne observations of sub-3 nm particles in the lower troposphere and investigates new particle formation (NPF) within an evolving boundary layer (BL). We studied particle concentrations together with supporting gas and meteorological data inside the planetary BL over a boreal forest site in Hyytiälä, southern Finland. The analysed data were collected during three flight measurement campaigns: May–June 2015, August 2015 and April–May 2017, including 27 morning and 26 afternoon vertical profiles. As a platform for the instrumentation, we used a Cessna 172 aircraft. The analysed flight data were collected horizontally within a 30 km distance from SMEAR II in Hyytiälä and vertically from 100 m above ground level up to 2700 m. The number concentration of 1.5–3 nm particles was observed to be, on average, the highest near the forest canopy top and to decrease with increasing altitude during the mornings of NPF event days. This indicates that the precursor vapours emitted by the forest play a key role in NPF in Hyytiälä. During daytime, newly formed particles were observed to grow in size and the particle population became more homogenous within the well-mixed BL in the afternoon. During undefined days with respect to NPF, we also detected an increase in concentration of 1.5–3 nm particles in the morning but not their growth in size, which indicates an interrupted NPF process during these undefined days. Vertical mixing was typically stronger during the NPF event days than during the undefined or non-event days. The results shed light on the connection between boundary layer dynamics and NPF.
Abstract. According to current estimates, atmospheric new particle formation (NPF) produces a large fraction of aerosol particles and cloud condensation nuclei in the earth’s atmosphere, therefore having implications for health and climate. Despite recent advances, atmospheric NPF is still insufficiently understood in the upper parts of the boundary layer (BL). In addition, it is unclear how NPF in upper BL is related to the processes observed in the near-surface layer. The role of the topmost part of the residual layer (RL) in NPF is to a large extent unexplored. This paper presents new results from co-located airborne and ground-based measurements in a boreal forest environment, showing that many NPF events (∼42 %) appear to start in the upper RL. The freshly formed particles may be entrained into the growing mixed layer (ML) where they continue to grow in size, similar to the aerosol particles formed within the ML. The results suggest that in the boreal forest environment, NPF in the upper RL has an important contribution to the aerosol load in the BL.
Abstract. According to current estimates, atmospheric new particle formation (NPF) produces a large fraction of aerosol particles and cloud condensation nuclei in the Earth's atmosphere, which have implications for health and climate. Despite recent advances, atmospheric NPF is still insufficiently understood in the lower troposphere, especially above the mixed layer (ML). This paper presents new results from co-located airborne and ground-based measurements in a boreal forest environment, showing that many NPF events (∼42 %) appear to start in the topmost part of the residual layer (RL). The freshly formed particles may be entrained into the growing mixed layer (ML) where they continue to grow in size, similar to the aerosol particles formed within the ML. The results suggest that in the boreal forest environment, NPF in the upper RL has an important contribution to the aerosol load in the boundary layer (BL).
Poor air quality influences the quality of life in the urban environment. The regulatory observation stations provide the backbone for the city administration to monitor urban air quality. Recently a suite of cost-effective air quality sensors has emerged to provide novel insights into the spatio-temporal variability of aerosol particles and trace gases. Particularly in low concentrations these sensors might suffer from issues related e.g., to high detection limits, concentration drifts and interdependency between the observed trace gases and environmental parameters. In this study we characterize the optical particle detector used in AQT530 (Vaisala Ltd.) air quality sensor in the laboratory. We perform a measurement campaign with a network of AQT530 sensors in Helsinki, Finland in 2020–2021 and present a long-term performance evaluation of five sensors for particulate (PM10, PM2.5) and gaseous (NO2, NO, CO, O3) components during a half-year co-location study with reference instruments at an urban traffic site. Furthermore, short-term (3–5 weeks) co-location tests were performed for 25 sensors to provide sensor-specific correction equations for the fine-tuning of selected pollutants in the sensor network. We showcase the added value of the verified network of 25 sensor units to address the spatial variability of trace gases and aerosol mass concentrations in an urban environment. The analysis assesses road and harbor traffic monitoring, local construction dust monitoring, aerosol concentrations from fireworks, impact of sub-urban small scale wood combustion and detection of long-range transport episodes on a city scale. Our analysis illustrates that the calibrated network of Vaisala AQT530 air quality sensors provide new insights into the spatio-temporal variability of air pollution within the city. This information is beneficial to, for example, optimization of road dust and construction dust emission control as well as provides data to tackle air quality problems arising from traffic exhaust and localized wood combustion emissions in the residential areas.
<p><strong>Abstract.</strong> This work presents airborne observations of sub-3&#8201;nm particles in the lower troposphere and investigates new particle formation (NPF) within an evolving boundary layer (BL). We studied particle concentrations together with supporting gas and meteorological data inside the planetary BL over a boreal forest site in Hyyti&#228;l&#228;, Southern Finland. The analysed data were collected during three flight measurement campaigns: May&#8211;June 2015, August 2015 and April&#8211;May 2017, including 27 morning and 26 afternoon vertical profiles. As a platform for the instrumentation, we used a Cessna 172 aircraft. The analysed flight data were collected horizontally within a 30-km distance from the SMEAR II station in Hyyti&#228;l&#228; and vertically from 100&#8201;metres above ground level up to 2700&#8201;m. The number concentration of 1.5&#8211;3&#8201;nm particles was observed to be, on average, the highest near the forest canopy top and to decrease with an increasing altitude during the mornings of NPF event days. This indicates that the precursor vapours emitted by the forest play a key role in NPF in Hyyti&#228;l&#228;. During daytime, newly-formed particles were observed to grow in size and the particle population became more homogenous within the well-mixed BL in the afternoon. During undefined days in respect to NPF, we also detected an increase in concentrations of 1.5&#8211;3&#8201;nm particles in the morning but not their growth in size, which indicates an interrupted NPF process during these undefined days. Vertical mixing was typically stronger during the NPF event days than during the undefined or non-event days.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.