Abstract-Objective:Modeling of respiratory motion is important for a more accurate understanding and accounting of its effect on dose to cancers in the thorax and abdomen by radiotherapy. We have developed a model of respirationinduced organ motion in the thorax, without the commonly adopted assumption of repeatable breath cycles. Methods and Results
We address the question which additional information on the source shape and dynamics can be extracted from three-particle Bose-Einstein correlations.For chaotic sources the true three-particle correlation term is shown to be sensitive to the momentum dependence of the saddle point of the source and to its asymmetries around that point. For partially coherent sources the three-pion correlator allows to measure the degree of coherence without contamination from resonance decays. We derive the most general Gaussian parametrization of the two-and three-particle correlator for this case and discuss the space-time interpretation of the corresponding parameters.
Purpose: Respiratory motion adversely affects CBCT image quality and limits its localization accuracy for image-guided radiation treatment. Motion correction methods in CBCT have focused on the thorax because of its higher soft tissue contrast, whereas low-contrast tissue in abdomen remains a challenge. The authors report on a method to correct respiration-induced motion artifacts in 1 min CBCT scans that is applicable in both thorax and abdomen, using a motion model adapted to the patient from a respiration-correlated image set. Methods: Model adaptation consists of nonrigid image registration that maps each image to a reference image in the respiration-correlated set, followed by a principal component analysis to reduce errors in the nonrigid registration. The model parametrizes the deformation field in terms of observed surrogate ͑diaphragm or implanted marker͒ position and motion ͑inhalation or exhalation͒ between the images. In the thorax, the model is obtained from the same CBCT images that are to be motion-corrected, whereas in the abdomen, the model uses respiration-correlated CT ͑RCCT͒ images acquired prior to the treatment session. The CBCT acquisition is a single 360°rotation lasting 1 min, while simultaneously recording patient breathing. The approximately 600 projection images are sorted into six ͑in thorax͒ or ten ͑in abdomen͒ subsets and reconstructed to obtain a set of low-quality respiration-correlated RC-CBCT images. Application of the motion model deforms each of the RC-CBCT images to a chosen reference image in the set; combining all images yields a single high-quality CBCT image with reduced blurring and motion artifacts. Repeated application of the model with different reference images produces a series of motion-corrected CBCT images over the respiration cycle, for determining the motion extent of the tumor and nearby organs at risk. The authors also investigate a simpler correction method, which does not use PCA and correlates motion state with respiration phase, thus assuming repeatable breathing patterns. Comparison of contrast-to-noise ratios of pixel intensities within anatomical structures relative to surrounding background tissue provides a quantitative assessment of relative organ visibility. Results: Evaluation in lung phantom, two patient cases in thorax and two in upper abdomen, shows that blurring and streaking artifacts are visibly reduced with motion correction. The boundaries of tumors in the thorax, liver, and kidneys are sharper and more discernible. Repeat application of the method in one thorax case, with reference images chosen at end expiration and end inspiration, indicates its feasibility for observing tumor motion extent. Phase-based motion correction without PCA reduces blurring less effectively; in addition, implanted markers appear broken up, indicating inconsistencies in the phase-based correction. In structures showing 1 cm or more motion excursion, PCA-based motion correction shows the highest contrast-to-noise ratios in the cases examined. Conclusions: Motion...
A general derivation of the multi-pion correlation function for completely chaotic source is given. Its effects on the pion multiplicity distribution, twopion interferometry are studied. A generalized multi-pion correlation function for a partially coherent source is also discussed.
Bose-Einstein correlations of two identically charged Qbosons are derived considering these particles to be confined in finite volumes. Boundary effects on single Q-boson spectrum are also studied. We illustrate the effects on the spectrum and on the two-Q-boson correlation function by means of two toy models. We also derive a generalized expression for the Wigner function depending on the deformation parameter Q, which is reduced to its original functional form in the limit of Q → 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.