The present study investigates the influence of ultrasonic treatment on the grain refinement of commercial purity aluminium with a range of Al3Ti1B master alloy additions. When the aluminium contains the smallest amount of added master alloy, ultrasonics caused significant additional grain refinement compared to that provided by the master alloy alone. However, the influence of ultrasonics on grain size reduces with increasing addition of the master alloy which adds additional TiB2 particles and Ti solute with each incremental addition. Applying the Interdependence model to analyse the experimentally measured grain sizes revealed that the results of this study and those from similar experiments on an Al-2Cu alloy were consistent when the alloy compositions are converted to their growth restriction factors (Q) and that increasing Q had a major effect on reducing grain size and increasing grain number density. Compared with the application of ultrasonic treatment where an order of magnitude increase in the grain number density is achieved, an increase in the Ti content over the range of master alloy additions, causes the grain number density to increase by approximately three times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.