In the present research, the conformation of bovine serum albumin (BSA) in the nanodiamond particle (ND)-BSA complex was studied by Fourier transform infrared spectroscopy, fluorescence spectroscopy, UV-vis spectroscopy, and circular dichroism spectroscopy. The spectroscopic study revealed that most BSA structural features could be preserved in the complex though the BSA underwent conformational changes in the complex due to ND-BSA interaction. In addition, BSA adsorption isotherms and zeta-potential measurements were employed to investigate the pH dependence of the ND-BSA interaction. The changes in surface charge of the ND-BSA complex with pH variations indicated that the binding of BSA to ND might lead to not only the adsorption of BSA onto the ND surface but also the partial breakup of ND aggregates into relatively small ND-BSA aggregates because of the strong binding force between ND and BSA. The results show that ND is an excellent platform for protein immobilization with high affinity and holds great potential to be used for biosensor applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.