Identifying signatures of recent or ongoing selection is of high relevance in livestock population genomics. From a statistical perspective, determining a proper testing procedure and combining various test statistics is challenging. On the basis of extensive simulations in this study, we discuss the statistical properties of eight different established selection signature statistics. In the considered scenario, we show that a reasonable power to detect selection signatures is achieved with high marker density (>1 SNP/kb) as obtained from sequencing, while rather small sample sizes (~15 diploid individuals) appear to be sufficient. Most selection signature statistics such as composite likelihood ratio and cross population extended haplotype homozogysity have the highest power when fixation of the selected allele is reached, while integrated haplotype score has the highest power when selection is ongoing. We suggest a novel strategy, called de-correlated composite of multiple signals (DCMS) to combine different statistics for detecting selection signatures while accounting for the correlation between the different selection signature statistics. When examined with simulated data, DCMS consistently has a higher power than most of the single statistics and shows a reliable positional resolution. We illustrate the new statistic to the established selective sweep around the lactase gene in human HapMap data providing further evidence of the reliability of this new statistic. Then, we apply it to scan selection signatures in two chicken samples with diverse skin color. Our analysis suggests that a set of well-known genes such as BCO2, MC1R, ASIP and TYR were involved in the divergent selection for this trait.
This study investigated the imputation accuracy of different methods, considering both the minor allele frequency and relatedness between individuals in the reference and test data sets. Two data sets from the combined population of Swedish and Finnish Red Cattle were used to test the influence of these factors on the accuracy of imputation. Data set 1 consisted of 2,931 reference bulls and 971 test bulls, and was used for validation of imputation from 3,000 markers (3K) to 54,000 markers (54K). Data set 2 contained 341 bulls in the reference set and 117 in the test set, and was used for validation of imputation from 54K to high density [777,000 markers (777K)]. Both test sets were divided into 4 groups according to their relationship to the reference population. Five imputation methods (Beagle, IMPUTE2, findhap, AlphaImpute, and FImpute) were used in this study. Imputation accuracy was measured as the allele correct rate and correlation between imputed and true genotypes. Results demonstrated that the accuracy was lower when imputing from 3K to 54K than from 54K to 777K. Using various imputation methods, the allele correct rates varied from 93.5 to 97.1% when imputing from 3K to 54K, and from 97.1 to 99.3% when imputing from 54K to 777K; IMPUTE2 and Beagle resulted in higher accuracies and were more robust under various conditions than the other 3 methods when imputing from 3K to 54K. The accuracy of imputation using FImpute was similar to those results from Beagle and IMPUTE2 when imputing from 54K to high density, and higher than the remaining 2 methods. The results also showed that a closer relationship between test set and reference set led to a higher accuracy for all the methods. In addition, the correct rate was higher when the minor allele frequency was lower, whereas the correlation coefficient was lower when the minor allele frequency was lower. The results indicate that Beagle and IMPUTE2 provide the most robust and accurate imputation accuracies, but considering computing time and memory usage, FImpute is another alternative method.
The identification of causal genes or genomic regions associated with fatty acids (FA) will enhance our understanding of the pathways underlying FA synthesis and provide opportunities for changing milk fat composition through a genetic approach. The linkage disequilibrium between adjacent markers is highly consistent between the Chinese and Danish Holstein populations, such that a joint genome-wide association study (GWAS) can be performed. In this study, a joint GWAS was performed for 16 milk FA traits based on data of 784 Chinese and 371 Danish Holstein cows genotyped by a high-density bovine single nucleotide polymorphism (SNP) array. A total of 486,464 SNP markers on 29 bovine autosomes were used. Bonferroni corrections were applied to adjust the significance thresholds for multiple testing at the genome- and chromosome-wide levels. According to the analysis of either the Chinese or Danish data individually, the total numbers of overlapping SNP that were significant at the chromosome level were 94 for C14:1, 208 for the C14 index, and 1 for C18:0. Joint analysis using the combined data of the 2 populations detected greater numbers of significant SNP compared with either of the individual populations alone for 7 and 10 traits at the genome- and chromosome-wide significance levels, respectively. Greater numbers of significant SNP were detected for C18:0 and the C18 index in the Chinese population compared with the joint analysis. Sixty-five significant SNP across all traits had significantly different effects in the 2 populations. Ten FA were influenced by a quantitative trait loci (QTL) region including DGAT1. Both C14:1 and the C14 index were influenced by a QTL region including SCD1 in the combined population. Other QTL regions also showed significant associations with the studied FA. A large region (14.9-24.9 Mbp) in BTA26 significantly influenced C14:1 and the C14 index in both populations, mostly likely due to the SNP in SCD1. A QTL region (69.97-73.69 Mbp) on BTA9 showed a significantly different effect on C18:0 between the 2 populations. Detection of these important SNP and the corresponding QTL regions will be helpful for follow-up studies to identify causal mutations and their interaction with environments for milk FA in dairy cattle.
Improving immune capacity may increase the profitability of animal production if it enables animals to better cope with infections. Hematological traits play pivotal roles in animal immune capacity and disease resistance. Thus far, few studies have been conducted using a high-density swine SNP chip panel to unravel the genetic mechanism of the immune capability in domestic animals. In this study, using mixed model-based single-locus regression analyses, we carried out genome-wide association studies, using the Porcine SNP60 BeadChip, for immune responses in piglets for 18 hematological traits (seven leukocyte traits, seven erythrocyte traits, and four platelet traits) after being immunized with classical swine fever vaccine. After adjusting for multiple testing based on permutations, 10, 24, and 77 chromosome-wise significant SNPs were identified for the leukocyte traits, erythrocyte traits, and platelet traits respectively, of which 10 reached genome-wise significance level. Among the 53 SNPs for mean platelet volume, 29 are located in a linkage disequilibrium block between 32.77 and 40.59 Mb on SSC6. Four genes of interest are located within the block, providing genetic evidence that this genomic segment may be considered a candidate region relevant to the platelet traits. Other candidate genes of interest for red blood cell, hemoglobin, and red blood cell volume distribution width also have been found near the significant SNPs. Our genome-wide association study provides a list of significant SNPs and candidate genes that offer valuable information for future dissection of molecular mechanisms regulating hematological traits.
Genomic selection using dense markers covering the whole genome is a tool for the genetic improvement of livestock and is revolutionizing the breeding system in dairy cattle. Progeny-tested bulls have been used to form reference populations in almost all countries where genomic selection has been implemented. In this study, the accuracy of genomic prediction when cows are used to form the reference population was investigated. The reference population consisted of 3,087 cows. All individuals were genotyped with Illumina BovineSNP50. After genotype imputation and editing, 48,676 single nucleotide polymorphisms were available for analysis. Two methods, genomic BLUP (GBLUP) and BayesB, were used to render genomic estimated breeding values (GEBV) for 5 milk production traits. Accuracies of GEBV were assessed in 3 ways: r(GEBV,EBV) (the correlation between GEBV and conventional EBV) in 67 progeny-tested bulls, rGEBV,EBV from a 5-fold cross validation in the 3,087 cow reference population, and the theoretical accuracy (for GBLUP) calculated in the same way as for conventional BLUP. The results showed that using GBLUP, the r(GEBV,EBV) and theoretical accuracy of genomic prediction in Chinese Holstein ranged from 0.59 to 0.76 and 0.70 to 0.80, respectively, which was 0.13 to 0.30 and 0.23 to 0.33 higher than the accuracies of conventional pedigree index, respectively. The results indicate that, as an alternative, genomic selection using cows in the reference population is feasible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.