In gesture recognition, one challenge that researchers and developers face is the need for recognition strategies that mediate between false positives and false negatives. In this article, we examine bi-level thresholding, a recognition strategy that uses two thresholds: a tighter threshold limits false positives and recognition errors, and a looser threshold prevents repeated errors (false negatives) by analyzing movements in sequence. We first describe early observations that led to the development of the bi-level thresholding algorithm. Next, using a Wizard-of-Oz recognizer, we hold recognition rates constant and adjust for fixed versus bi-level thresholding; we show that systems using bi-level thresholding result in significantly lower workload scores on the NASA-TLX and significantly lower accelerometer variance when performing gesture input. Finally, we examine the effect that bi-level thresholding has on a real-world dataset of wrist and finger gestures, showing an ability to significantly improve measures of precision and recall. Overall, these results argue for the viability of bi-level thresholding as an effective technique for balancing between false positives, recognition errors, and false negatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.