An ovarian cell line was successfully developed from the juvenile ovary of Southern catfish (SCO1) (Silurus meridionalis), which was designated as SCO1. The cell line multiplied preferentially in L-15 medium with 15 % fetal bovine serum at 28 °C for more than 70 passages over a period of 420 days. SCO1 showed fibroblast-like morphology and predominantly retained a diploid karyotype of 58 chromosomes. From the gene expression patterns, SCO1 showed a characteristic of ovarian granulosa cells. After the cells were transfected with the green fluorescent protein expression vector, bright fluorescent signals could be observed in approximately 30 % cells. This cell line may be valuable for the evaluation of endocrine disruptors and studying interactions between somatic cells and germ cells.
In the production and gathering process of coal gas, the complex composition of the coal gas, harsh environments, the complex medium, and high content of solid particles in slurry cause the equipment malfunctions and even failure because of erosion and corrosion. In the present study, COMSOL multi-physics finite element simulation software is used to simulate the erosion–corrosion behaviors of elbow in key chemical equipments. The electrochemical corrosion, solid particle erosion, chemical reaction, and turbulent flow are coupled together. The particle count method is proposed to clarify the erosion phenomenon. The simulation results show that particles with high turbulent intensity hit the wall of elbow directly, which forms a slanted elliptical erosion zone on the extrados surface at 40°–50°. The chemical reaction in turbulence has a difference in the concentration distribution of substances, and this phenomenon leads to different magnitudes of the corrosion current densities in the tube. Moreover, 1/6 released particles hit the extrados surface of the elbow. These findings are beneficial to understand the erosion–corrosion phenomena and design the elbow in key chemical equipment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.