This paper has studied spontaneous symmetry breaking (SSB) phenomenon in two types of two-channel asymmetric simple exclusion processes (ASEPs). One common feature of the two systems is that interactions for each species of particle happen at only one site, and the system reduces to two independent ASEPs when interaction vanishes. It is shown that with the weakening of interaction, the SSB is suppressed. More interestingly, the SSB disappears before the interaction is eliminated. Our work thus indicates that local interaction has to be strong enough to produce SSB. The mean-field analysis has been carried out, and the results are consistent with the simulation ones.
Potassium countercurrent through the SR K+ channel plays an important role in Ca2+ release from the SR. To see if Ca2+ regulates the channel, we incorporated canine cardiac SR K+ channel into lipid bilayers. Calcium ions present in either the SR lumenal (trans) or cytoplasmic (cis) side blocked the cardiac SR K+ channel in a voltage-dependent manner. When Ca2+ was present on both sides, however, the block appeared to be voltage independent. A two-binding site model of blockade by an impermeant divalent cation (Ca2+) can explain this apparent contradiction. Estimates of SR Ca2+ concentration suggest that under physiological conditions the cardiac SR K+ channel is partially blocked by Ca2+ ions present in the lumen of the SR. The reduction in lumenal [Ca2+] during Ca2+ release could increase K+ conductance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.