A pair of cobalt(II)-based hydrogen-bonded organic frameworks (HOFs), [Co(pca)2(bmimb)]n (1) and [Co2(pca)4(bimb)2] (2), where Hpca = p-chlorobenzoic acid, bmimb = 1,3-bis((2-methylimidazol-1-yl)methyl)benzene, and bimb = 1,4-bis(imidazol-1-ylmethyl)benzene were hydrothermally synthesized and characterized through infrared spectroscopy (IR), elemental and thermal analysis (EA), power X-ray diffraction (PXRD), and single-crystal X-ray diffraction (SCXRD) analyses. X-ray diffraction structural analysis revealed that 1 has a one-dimensional (1D) infinite chain network through the deprotonated pca− monodentate chelation and with a μ2-bmimb bridge Co(II) atom, and 2 is a binuclear Co(II) complex construction with a pair of symmetry-related pca- and bimb ligands. For both 1 and 2, each cobalt atom has four coordinated twisted tetrahedral configurations with a N2O2 donor set. Then, 1 and 2 are further extended into three-dimensional (3D) or two-dimensional (2D) hydrogen-bonded organic frameworks through C–H···Cl interactions. Topologically, HOFs 1 and 2 can be simplified as a 4-connected qtz topology with a Schläfli symbol {64·82} and a 4-connected sql topology with a Schläfli symbol {44·62}, respectively. The fluorescent sensing application of 1 was investigated; 1 exhibits high sensitivity recognition for Fe3+ (Ksv: 10970 M−1 and detection limit: 19 μM) and Cr2O72− (Ksv: 12960 M−1 and detection limit: 20 μM). This work provides a feasible detection platform of HOFs for highly sensitive discrimination of Fe3+and Cr2O72− in aqueous media.
A pair of two-dimensional (2D) isostructural coordination polymers (CPs), {[Co(2,3-qldc)(H2O)]} n (1) and {[Mn(2,3-qldc)(H2O)]} n (2), where 2,3-H2qldc = quinoline-2,3-dicarboxylic acid, were hydrothermally synthesized and characterized through IR spectroscopy, elemental and thermal analysis, power X-ray diffraction, and single-crystal X-ray diffraction. The results have revealed that the fully deprotonated 2,3-H2qldc ligand connects the Co(II)/Mn(II) atoms with a μ 3-bridge to form a square-wave 2D network, which is further extended into 3D stacks through O–H···O, C–H···O hydrogen bonds and π···π stacking interactions. Topologically, 1 or 2 can be simplified as a 4-connected sql type with a Schläfli symbol {44·62} and a Shubnikov tetragonal plane net, or as a 3-connected fes type with a Schläfli symbol {4·82} and a Shubnikov plane net. The thermal stability and the solid state fluorescence properties of 1 and 2 were investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.