BackgroundHemorrhagic fever with renal syndrome (HFRS) is a rodent-borne disease caused by many serotypes of hantaviruses. In China, HFRS has been recognized as a severe public health problem with 90% of the total reported cases in the world. This study describes the spatiotemporal dynamics of HFRS cases in China and identifies the regions, time, and populations at highest risk, which could help the planning and implementation of key preventative measures.MethodsData on all reported HFRS cases at the county level from January 2005 to December 2012 were collected from Chinese Center for Disease Control and Prevention. Geographic Information System-based spatiotemporal analyses including Local Indicators of Spatial Association and Kulldorff's space-time scan statistic were performed to detect local high-risk space-time clusters of HFRS in China. In addition, cases from high-risk and low-risk counties were compared to identify significant demographic differences.ResultsA total of 100,868 cases were reported during 2005–2012 in mainland China. There were significant variations in the spatiotemporal dynamics of HFRS. HFRS cases occurred most frequently in June, November, and December. There was a significant positive spatial autocorrelation of HFRS incidence during the study periods, with Moran's I values ranging from 0.46 to 0.56 (P<0.05). Several distinct HFRS cluster areas were identified, mainly concentrated in northeastern, central, and eastern of China. Compared with cases from low-risk areas, a higher proportion of cases were younger, non-farmer, and floating residents in high-risk counties.ConclusionsThis study identified significant space-time clusters of HFRS in China during 2005–2012 indicating that preventative strategies for HFRS should be particularly focused on the northeastern, central, and eastern of China to achieve the most cost-effective outcomes.
BackgroundThe temporal variation of malaria incidence has been linked to meteorological factors in many studies, but key factors observed and corresponding effect estimates were not consistent. Furthermore, the potential effect modification by individual characteristics is not well documented. This study intends to examine the delayed effects of meteorological factors and the sub-population’s susceptibility in Guangdong, China.MethodsThe Granger causality Wald test and Spearman correlation analysis were employed to select climatic variables influencing malaria. The distributed lag non-linear model (DLNM) was used to estimate the non-linear and delayed effects of weekly temperature, duration of sunshine, and precipitation on the weekly number of malaria cases after controlling for other confounders. Stratified analyses were conducted to identify the sub-population’s susceptibility to meteorological effects by malaria type, gender, and age group.ResultsAn incidence rate of 1.1 cases per 1,000,000 people was detected in Guangdong from 2005–2013. High temperature was associated with an observed increase in malaria incidence, with the effect lasting for four weeks and a maximum relative risk (RR) of 1.57 (95% confidence interval (CI): 1.06-2.33) by comparing 30°C to the median temperature. The effect of sunshine duration peaked at lag five and the maximum RR was 1.36 (95% CI: 1.08-1.72) by comparing 24 hours/week to 0 hours/week. A J-shaped relationship was found between malaria incidence and precipitation with a threshold of 150 mm/week. Over the threshold, precipitation increased malaria incidence after four weeks with the effect lasting for 15 weeks, and the maximum RR of 1.55 (95% CI: 1.18-2.03) occurring at lag eight by comparing 225 mm/week to 0 mm/week. Plasmodium falciparum was more sensitive to temperature and precipitation than Plasmodium vivax. Females had a higher susceptibility to the effects of sunshine and precipitation, and children and the elderly were more sensitive to the change of temperature, sunshine duration, and precipitation.ConclusionTemperature, duration of sunshine and precipitation played important roles in malaria incidence with effects delayed and varied across lags. Climatic effects were distinct among sub-groups. This study provided helpful information for predicting malaria incidence and developing the future warning system.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-015-0630-6) contains supplementary material, which is available to authorized users.
ABSTRACT:Previous studies have demonstrated a diversity of Bartonella spp. in rodent populations in Yunnan Province, China. Although Bartonella spp. have been isolated from cat fleas and cattle ticks collected from their animal hosts, little is known about Bartonella carried by rodent fleas. In this study, Bartonella DNA was detected by polymerase chain reaction (PCR) in two of five species of rodent fleas. These included Xenopsylla cheopis and Ctenophthalmus lushuiensis, which were collected from Rattus tanezumi flavipectus and from the nests of voles, respectively, during 1997 from two sites in western Yunnan Province, China. Sequence analysis of the Bartonella citrate synthase gene (gltA) amplicons obtained from six of 65 grouped flea samples showed that Bartonella genetic variants were clustered in four groups. One from Xenopsylla cheopis was identical to Bartonella tribocorum, whereas the other three genotypes from Ctenophthalmus lushuiensis were related to the vole-associated Bartonella isolates and cat-associated Bartonella clarridgeiae. This is the first detection of this Bartonella variant from fleas in China. Therefore, further investigations are needed to clarify the distribution of Bartonella in rodents and their ectoparasites in China to define the role of these arthropods in the transmission routes of Bartonella.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.