Infection with some viruses can alter cellular mRNA processing to favor viral gene expression. We present evidence that herpes simplex virus 1 (HSV-1) protein ICP27, which contributes to host shut-off by inhibiting pre-mRNA splicing, interacts with essential splicing factors termed SR proteins and affects their phosphorylation. During HSV-1 infection, phosphorylation of several SR proteins was reduced and this correlated with a subnuclear redistribution. Exogenous SR proteins restored splicing in ICP27-inhibited nuclear extracts and SR proteins isolated from HSV-1-infected cells activated splicing in uninfected S100 extracts, indicating that inhibition occurs by a reversible mechanism. Spliceosome assembly was blocked at the pre-spliceosomal complex A stage. Furthermore, we show that ICP27 interacts with SRPK1 and relocalizes it to the nucleus; moreover, SRPK1 activity was altered in the presence of ICP27 in vitro. We propose that ICP27 modi®es SRPK1 activity resulting in hypophosphorylation of SR proteins impairing their ability to function in spliceosome assembly.
Polycomb repressive complex two (PRC2) has been implicated in embryonic stem (ES) cell pluripotency; however, the mechanistic roles of this complex are unclear. It was assumed that ES cells contain PRC2 with the same subunit composition as that identified in HeLa cells and Drosophila embryos. Here, we report that PRC2 in mouse ES cells contains at least three additional subunits: JARID2, MTF2, and a novel protein denoted esPRC2p48. JARID2, MTF2, and esPRC2p48 are highly expressed in mouse ES cells compared to differentiated cells. Importantly, knockdowns of JARID2, MTF2, or esPRC2p48 alter the level of PRC2-mediated H3K27 methylation and result in the expression of differentiation-associated genes in ES cells. Interestingly, expression of JARID2, MTF2, and esPRC2p48 together, but not individually, enhances Oct4/Sox2/Klf4-mediated reprograming of mouse embryonic fibroblasts (MEFs) into induced pluripotent stem cells, whereas knockdown or knockout of JARID2, MTF2, or esPRC2p48 significantly inhibits reprograming. JARID2, MTF2, and esPRC2p48 modulate H3K27 methylation and facilitate repression of lineage-associated gene expression when transduced into MEFs, and synergistically stimulate the histone methyl-transferase activity of PRC2 in vitro. Therefore, these studies identify JARID2, MTF2, and esPRC2p48 as important regulatory subunits of PRC2 in ES cells and reveal critical functions of these subunits in modulating PRC2’s activity and gene expression both in ES cells and during somatic cell reprograming.
Background: Aberrant expression of circular RNAs contributes to the initiation and progression of cancers, but the underlying mechanism remains elusive. Methods: RNA-seq and qRT-PCR were performed to screen differential expressed circRNAs between gastric cancer tissues and adjacent normal tissues. Candidate circRNA (circMRPS35) was screened out and validated by qRT-PCR. Cell proliferation and invasion ability were determined by CCK-8 and cell invasion assays. RNA-seq, GO-pathway, RNA pull-down and ChIRP were further applied to search for detailed mechanism. Results: Here, a novel circRNA named circMRPS35, was screened out by RNA-seq in gastric cancer tissues, whose expression is related to clinicopathological characteristics and prognosis in gastric cancer patients. Biologically, circMRPS35 suppresses the proliferation and invasion of gastric cancer cells in vitro and in vivo. Mechanistically, circMRPS35 acts as a modular scaffold to recruit histone acetyltransferase KAT7 to the promoters of FOXO1 and FOXO3a genes, which elicits acetylation of H4K5 in their promoters. Particularly, circMRPS35 specifically binds to FOXO1/3a promoter regions directly. Thus, it dramatically activates the transcription of FOXO1/3a and triggers subsequent response of their downstream target genes expression, including p21, p27, Twist1 and E-cadherin, resulting in the inhibition of cell proliferation and invasion. Moreover, circMRPS35 expression positively correlates with that of FOXO1/3a in gastric cancer tissues. Conclusions: Our findings not only reveal the pivotal roles of circMRPS35 in governing histone modification in anticancer treatment, but also advocate for triggering circMRPS35/KAT7/FOXO1/3a pathway to combat gastric cancer.
Mammary analog secretory carcinoma (MASC) is a recently recognized low-grade salivary carcinoma characterized by a specific ETV6 rearrangement. We describe 14 new MASCs and examine their immunophenotypic and genetic profiles in the context of look-alikes, namely, low-and high-grade salivary duct carcinoma and acinic cell carcinoma. ETV6 rearrangement, and robust expression of mammaglobin and S100, were demonstrated in 11/11, 14/14, and 12/14 MASCs, respectively. All low-grade salivary duct carcinomas coexpressed S100/mammaglobin (6/6); none harbored ETV6 rearrangements (0/5). Given that S100/mammaglobin coexpression and absence of zymogen granules are features of both MASC and low-grade salivary duct carcinoma, these two are best distinguished histologically. The former is predominantly an extraductal neoplasm with bubbly pink cytoplasm, whereas the latter is a distinct intraductal micropapillary and cribriform process. Querying ETV6 gene status may be necessary for difficult cases. No acinic cell carcinoma expressed mammaglobin (0/13) or harbored an ETV6 rearrangement (0/7); only 1/13 acinic cell carcinomas weakly expressed S100. DOG1 expression was limited or absent among all tumor types, except acinic cell carcinoma which expressed DOG1 diffusely in a canalicular pattern. Therefore, histology and immunohistochemistry (mammaglobin, S100, DOG1) suffices in distinguishing acinic cell carcinoma from both MASC and low-grade salivary duct carcinoma. HER2 (ERBB2) amplification was detected in only 1/10 acinic cell carcinomas, but none of the MASCs or low-grade salivary duct carcinomas tested. High-grade salivary duct carcinomas frequently expressed mammaglobin (11/18) and harbored HER2 amplifications (13/15); none harbored ETV6 rearrangements (0/12). High-grade salivary duct carcinomas can easily be distinguished from these other entities by histology and HER2 amplification.
Candida albicans undergoes a morphogenetic switch from budding yeast to hyphal growth form in response to a variety of stimuli and growth conditions. Multiple signaling pathways, including a Cph1-mediated mitogen-activated protein kinase pathway and an Efg1-mediated cyclic AMP/protein kinase A pathway, regulate the transition. Here we report the identification of a basic helix-loop-helix transcription factor of the Myc subfamily (Cph2) by its ability to promote pseudohyphal growth in Saccharomyces cerevisiae. Like sterol response element binding protein 1, Cph2 has a Tyr instead of a conserved Arg in the basic DNA binding region. Cph2 regulates hyphal development in C. albicans, as cph2/cph2 mutant strains show medium-specific impairment in hyphal development and in the induction of hypha-specific genes. However, many hypha-specific genes do not have potential Cph2 binding sites in their upstream regions. Interestingly, upstream sequences of all known hypha-specific genes are found to contain potential binding sites for Tec1, a regulator of hyphal development. Northern analysis shows that TEC1 transcription is highest in the medium in which cph2/cph2 displays a defect in hyphal development, and Cph2 is necessary for this transcriptional induction of TEC1. In vitro gel mobility shift experiments show that Cph2 directly binds to the two sterol regulatory element 1-like elements upstream of TEC1. Furthermore, the ectopic expression of TEC1 suppresses the defect of cph2/cph2 in hyphal development. Therefore, the function of Cph2 in hyphal transcription is mediated, in part, through Tec1. We further show that this function of Cph2 is independent of the Cph1-and Efg1-mediated pathways.Candida albicans is one of the most frequently isolated fungal pathogens of humans. It is capable of causing superficial mucosal infections as well as life-threatening systemic infections in immunocompromised individuals. C. albicans can undergo reversible morphogenetic transitions among budding yeast, pseudohyphal, and hyphal growth forms. The pathogenicity of this fungus is linked to its capacity to switch among different growth forms (27).A wide range of signals or culture conditions can trigger the yeast-to-hypha transition in C. albicans. These include serum, N-acetylglucosamine, proline, a temperature of 37°C, neutral pH, and microaerophilic conditions (8). Levels of expression of several genes have been shown to be associated with hyphal morphogenesis (hypha-specific genes), rather than with a specific hypha-inducing condition. Hypha-specific genes identified so far include ECE1, HWP1, HYR1, ALS3, RBT1, and RBT4 (2,4,7,18,43). Some of them, such as HWP1 (42), RBT1, and RBT4 (7), encode important virulence factors.Molecular cloning and characterization of hyphal regulators or signaling pathways have been based largely on the strong conservation between C. albicans and other genetically tractable fungi. Cph1 is homologous to Saccharomyces cerevisiae Ste12, which encodes a transcription factor required for mating and filamentous grow...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.