Lipids metabolism plays a significant role in cellular responses to virus pathogens. However, the impact of lipids metabolism in CSFV infection is not yet confirmed. In the present study, for the fist time, we performed serum lipidomics analysis of piglets infected with CSFV based on ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS), and identified 167 differentially expressed lipid metabolites. Interestingly, free fatty acids (FFAs) accumulated significantly in these metabolites, accompanied by an increase in sphingolipids and a decrease in glycerolipids and glycerophospholipids, suggesting that CSFV infection markedly changed the serum lipid metabolism of piglets. FFAs are the principal constituents of many complex lipids and are essential substrates for energy metabolism. Based on this, we focused on whether FFAs play a prominent role in CSFV infection. We found that CSFV infection induced FFAs accumulation in vivo and in vitro, which is due to increased fatty acid biosynthesis. Meanwhile, we discovered that alteration of cellular FFAs accumulation by a mixture of FFAs or inhibitors of fatty acid biosynthesis affects progeny virus production in vitro. Furthermore, in the absence of glucose or glutamine, CSFV still has replication capacity, which is significantly reduced with the addition of fatty acid beta oxidation inhibitors, suggesting that the process of FFAs enter the mitochondria for beta oxidation to produce ATP is necessary for virus replication. Finally, we demonstrated CSFV induced FFAs accumulation results in impaired type I IFN signaling-mediated antiviral responses by down-regulating RIG-I-like receptors (RLRs) signaling molecules, which may represent a mechanism of CSFV replication. Taken together, these findings provide the first data on lipid metabolites during CSFV infection and reveal a new view that CSFV infection requires FFAs to enhance viral replication.
Classical swine fever (CSF) is a severe acute infectious disease that results from classical swine fever virus (CSFV) infection, which leads to serious economic losses in the porcine industry worldwide. In recent years, numerous studies related to the immune escape mechanism of the persistent infection and pathogenesis of CSFV have been performed. Remarkably, several independent groups have reported that apoptosis, autophagy, and pyroptosis play a significant role in the occurrence and development of CSF, as well as in the immunological process. Apoptosis, autophagy, and pyroptosis are the fundamental biological processes that maintain normal homeostatic and metabolic function in eukaryotic organisms. In general, these three cellular biological processes are always understood as an immune defense response initiated by the organism after perceiving a pathogen infection. Nevertheless, several viruses, including CSFV and other common pathogens such as hepatitis C and influenza A, have evolved strategies for infection and replication using these three cellular biological process mechanisms. In this review, we summarize the known roles of apoptosis, autophagy, and pyroptosis in CSFV infection and how viruses manipulate these three cellular biological processes to evade the immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.