Image style transfer (IST) has drawn broad attention recently. At present, convolutional neural network (CNN)-based methods and generative adversarial network (GAN)-based methods have been broadly utilized in IST. However, the texture of images obtained by most methods presents a lower definition, which leads to insufficient details of IST. To this end, the authors present a new IST method based on an enhanced GAN with a prior circular local binary pattern (LBP). They utilize circular LBP in a GAN generator as a texture prior to improve the detailed textures of the generated style images. Meanwhile, they integrate a dense connection residual block and an attention mechanism into the generator to further improve high-frequency feature extraction. In addition, the total variation (TV) regularizer is integrated into the loss function to smooth the training results and restrain the noise. The qualitative and quantitative experimental results demonstrate that the metric quality of the generated images can achieve better effects by the proposed strategy compared with other popular approaches.
16-bit fixed-point high-speed chip TMS320VC5402 and audio interface chip TLV320AIC10 are adopted in this paper, by which collecting, filtering and compressing data are processed. Final data are put into computer through serial port and received by MATLAB to complete playback, coding, recognition and simulation. Floating-point operation is realized on fixed-point digital signal processor, which has higher precision in calculation and wider signal processing dynamic range comparing with fixed-point realization. The experimental results show that rate of continuous word speech recognition is more than 92%. The new system has advantage of small size, low cost and high scalability, which can be applied to many specific occasions, such as the speech controlling toys and access control system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.