Molecular imaging has greatly advanced basic biology and translational medicine through visualization and quantification of molecular events in a cellular context and living organisms. Nuclear medicine, including positron emission tomography (PET) and single-photon emission tomography (SPECT), is one of the most representative molecular imaging modalities which is widely used in clinical theranostics. Recently, numerous molecular imaging agents have been developed to improve the quality and expand the applicable diseases of molecular imaging. Based on the choice of specific imaging agents, molecular imaging is capable of studying tumor biological activities, detecting tumor metastasis, and imaging Alzheimer’s disease-related amyloid proteins. Among these imaging agents, functional oligonucleotides-based imaging probes are becoming increasingly important due to their unique features. Antisense oligonucleotides, small interfering RNA, and aptamers are privileged molecular tools in precision medicine for cancer diagnosis and treatment. These chemically synthesized oligonucleotides without batch-to-batch variations are flexible to incorporate with other molecules without affecting their functionalities. Therefore, through the combination of oligonucleotides with radioisotopes, a series of molecular imaging agents were developed in the past decades to achieve highly sensitive and accurate biomedical imaging modalities for clinical theranostic. Due to the nature of oligonucleotides, the strategies of oligonucleotide radiolabeling are different from conventional small molecular tracers, and the radiolabeling strategy with rational design is highly correlated to the imaging quality. In this review, we summarize recent advancements in functional oligonucleotide radiolabeling strategies and respective molecular imaging applications. Meanwhile, challenges and future development insights of functional oligonucleotide-based radiopharmaceuticals are discussed in the end.
Radioiodination of oligonucleotides provides an extra modality for nucleic acid-based theranostics with potential applications. Herein, we report the design and synthesis of a phosphoramidite embedded with a phenolic moiety and demonstrate that oligonucleotides can be readily functionalized with phenol as a precursor by general DNA synthesis. It was identified that the introduction of the precursor does not block the specificity of an aptamer, and the radioiodination is applicable to both DNA and RNA oligonucleotides in a site-specific approach with a commercial kit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.